Supplementary Material for
RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation
through Embedding Predictive Pre-Training

Raktim Gautam Goswami'* Prashanth Krishnamurthy!

Yann LeCun?? Farshad Khorrami!

'New York University Tandon School of Engineering

2New York University Courant Institute of Mathematical Sciences

Al. Encoder and Predictor Architectures

As described in Sec. 3.1, we use Vision Transformer
(ViT) [S4] architectures for both the encoder and predic-
tor, similar to [S1]. The input image, originally sized at
640 x 480 pixels, is cropped based on the region of inter-
est, resized to obtain 224 pixels along its longer side, and
padded to yield a 224 x 224 resolution. A convolutional
layer with a kernel size of 16 and a stride of 16 serves as the
patch embedding layer, converting the image into L patches
of size 16 x 16 each with a channel dimension of d = 768.
These patches are flattened, and learnable positional embed-
dings, initialized as 2D sinusoidal functions, are added to
the patches. The combined representations are then passed
through 12 transformer blocks. Each block contains multi-
headed self-attention with 12 heads, drop-path regulariza-
tion [S6], layer normalization [S2], and a multi-layer per-
ceptron (MLP). The output of the final transformer block
undergoes another layer normalization step, resulting in the
encoder output w; € R™® for j € {1,...,L}.

During evaluation, for the image of size 224 x 224 and
a patch size of 16 x 16, the number of patches is computed
as

224 224
L=M= 16><16_14><14—196. €))
However, during training, only the unmasked patches are
considered, so L < M, i.e., L < 196.

The predictor takes the encoder output and reduces the
embedding dimension of the patches from 768 to 384 using
a linear layer. It also adds positional embeddings, similar to
the encoder. During training, the L(< M) embeddings cor-
responding to the unmasked patches and (M — L) learnable
mask tokens are concatenated to represent all patches of

*Corresponding author: rgg9769@nyu.edu. This paper is sup-
ported in part by the Army Research Office under grant number W91 1NF-
21-1-0155 and by the New York University Abu Dhabi (NYUAD) Cen-
ter for Artificial Intelligence and Robotics, funded by Tamkeen under the
NYUAD Research Institute Award CG010.

*Meta-FAIR

the original image, including the masked ones. These em-
beddings are then processed through 12 transformer blocks.
The final output’s dimension is increased to 768 to match
the encoder’s output dimension, resulting in the predictor
output v; fori € {1,..., M}.

The target backbone uses the same architecture as the
encoder but directly operates on all M = 196 patches dur-
ing training. It produces outputs v; for i € {1,..., M}.
As outlined in the manuscript, during embedding predictive
pre-training, an L, loss between v; and v; is used to update
the weights of the encoder and predictor. Following [S1],
the target backbone is updated using an exponential moving
average of the encoder’s weights.

A2. Training Settings

Embedding Predictive Pre-Training: The AdamW op-
timizer [SO] with an initial learning rate of 10~* is used
for embedding predictive pre-training. The learning rate
is linearly increased to 103 over the first 10 epochs and
subsequently decreased to 1076 using a cosine annealing
scheduler. The network is pre-trained for a total of 200
epochs with a batch size of 320. Weight decay is linearly
increased from 0.04 to 0.4 during pre-training. For the ex-
ponential moving average (EMA) update of the target back-
bone’s weights, a momentum value of 0.996 is used, which
is linearly increased to 1.0 over the training process.
Keypoint Detection and Joint Angle Estimation: As de-
tailed in the manuscript, the pre-trained encoder-predictor
pair is fine-tuned along with the Keypoint Net and Joint Net.
An AdamW optimizer [S9] is used with an initial learning
rate of 10~%, which is decreased to 108 using a cosine an-
nealing scheduler. The network is trained for a total of 200
epochs with a batch size of 140.

Sim-to-Real Self-Supervised Training: To bridge the sim-
to-real gap, the trained networks are fine-tuned on real
datasets with self-supervised training, as described in Sec.
3.3. An AdamW optimizer [S9] is used with learning rates

‘-;
-

B

Panda ORB

Panda RS

Figure Al. Example images from each of the training and test sequences from the DREAM dataset [S7].

of 10~ 7 for the encoder and predictor and 10~° for the Joint
Network. The learning rate for the Keypoint Network is set
close to zero to prevent model collapse. We observed that
prioritizing Joint Network updates over the Keypoint Net-
work yielded the best results. On the Panda RS dataset, for
example, using a learning rate of 1071 for the Keypoint
Network and 10~ for the Joint Network improved ADD
AUC from 70.4 to 80.5. In contrast, reversing or equalizing
the rates resulted in lower performance (71.9 and 76.4, re-
spectively), highlighting the robustness of the keypoints for
guiding the Joint Network. Further, gradients originating
from the Keypoint Network’s output are scaled by 10719 to
prevent conflicting updates to the encoder-predictor. These
learning rates are all decreased by a factor of 108 over the
training process. Models are fine-tuned separately for each
real-world dataset for 10 epochs with a batch size of 64.

A3. Region of Interest Detection

We utilize the pre-trained GroundingDINO [S8] object de-
tection model to identify the region of interest, as described
in Sec. 3.3. GroundingDINO is a highly accurate open-
set object detector that accepts an (image, text) pair as in-
put and outputs bounding boxes corresponding to regions
of the image described by the text query. For all real and
photo-realistic test datasets, we use the text query “robotic
arm.” However, for the Panda, Kuka, and Baxter domain-

randomized datasets, we use the query “robot” because
these images often contain multiple objects, some of which
resemble arms and can confuse the detection model. All
other parameters of GroundingDINO are left at their de-
fault values. To address scenarios where only a portion of
the robot is detected, we expand all the detected bounding
boxes, especially for real datasets. Increasing all the bound-
ing box sizes by 100 pixels on all sides generally yields
robust robot pose estimation results. However, some fine-
tuning of this parameter may be necessary for optimal per-
formance depending on the specific dataset. Nonetheless,
high performance is obtained even without fine-tuning.

A4. Dataset Details

We evaluate our method on the DREAM dataset [S7], which
includes sequences from three robots: Franka Emika Panda
(Panda), Kuka iiwa7 (Kuka), and Rethink Robotics Bax-
ter (Baxter). The dataset provides training and testing se-
quences in both synthetic and real-world settings, as de-
tailed in Table A2. The synthetic data, created in Unreal
Engine 4, comprises domain-randomized (DR) and photo-
realistic (Photo) sequences. For real-world data, sequences
of the Panda robot were captured using Microsoft Azure
Kinect (AK), Xbox 360 Kinect (XK), and Intel RealSense
D415 (RS) cameras, with the cameras positioned at fixed
locations. Additionally, the Panda ORB dataset was col-

Known Known Real-World Sequences

Joint Angles Bounding Box | pypga AK Panda XK PandaRS Panda ORB | Average
DREAM-F Yes No 11413 491911 2077 95319 150180
DREAM-Q Yes No 78089 54178 27 64248 49136
DREAM-H Yes No 57 7382 24 25685 8287
HPE No Yes 19 24 25 25 23
RoboPose No No 34 22 26 30 28
HPE* No No 46 - 61 52 53
RoboPEPP (Ours) No No 29 22 23 27 26

Table A1. Comparison of robot pose estimation using mean ADD (in millimeters), with lower a value signifying better performance. The
best values among methods that use unknown joint angles and unknown bounding boxes during evaluation are bolded. HPE™ denotes
HPE [S3] evaluated with the same off-the-shelf bounding box detector as RoboPEPP. HPE* was not evaluated on Panda XK since corre-

sponding model weights were unavailable.

Dataset Real | # Images
& | Panda Train DR 104972
2 | Kuka Train DR 104977
= | Baxter TramnDR | x | 104982
Panda Photo X 5997
Panda DR X 5998
Panda AK v 6369
& Panda XK Ve 4966
% | PandaRS v 5944
& | panda ORB v 32315
Kuka Photo X 5999
Kuka DR X 5997
Baxter DR X 5982

Table A2. Number of images in each sequence of the dataset.

lected using a RealSense camera but with varying camera
placements. Example images from each dataset sequence
are illustrated in Fig. Al.

AS. Additional Results

A5.1. Mean ADD

In Table Al, we present the mean ADD (Average Dis-
tance) values (ADD defined in Sec. 4.2.1) on the Panda real-
world datasets. Consistent with Table 2, we compare our
method, RoboPEPP, against DREAM [S7], RoboPose [S5],
HPE [S3], and HPE* (HPE using our bounding box detec-
tion strategy). RoboPEPP achieves the lowest mean ADD
across all real-world data sequences among methods that
operate with unknown joint angles and bounding boxes.
DREAM [S7], which detects 2D keypoints and employs
them in a PnP solver to estimate the robot pose, is highly
sensitive to keypoint detection errors. Even a single incor-
rectly detected keypoint can cause DREAM to fail in pose

estimation, leading to high ADD.

A5.2. Ablation: Occlusion Robustness

In this section, we evaluate the methods from the Em-
bedding Predictive Pre-Training ablation studies (Sec. 4.3)
on the occlusion dataset described in Sec. 4.2.3. Specifi-
cally, we compare the following models: (1) a version of
RoboPEPP without pre-training, (2) a version pre-trained
with random masking instead of joint-specific masking, (3)
the standard RoboPEPP (pre-trained with joint masking),
and (4) a model pre-trained with joint masking but fine-
tuned without masking during the encoder-predictor fine-
tuning phase. As shown in Fig. A2, and similar to Fig. 6,
we plot the AUC of the ADD metric against the occlusion
ratio. Additionally, the percentage decrease in AUC rela-
tive to the performance without occlusion is annotated on
the plot. Among the methods, RoboPEPP achieves the best
performance across all occlusion ratios. While the frame-
work with random-masking-based pre-training and the one
fine-tuned without masking achieve performance compara-
ble to RoboPEPP under zero occlusion, their performances
degrade more rapidly as the occlusion ratio increases.

AS.3. Ablation: Joint Net and Keypoint Net

Fig. A3 and Table A3 analyze the Joint Net’s G value (num-
ber of refinement steps) and Keypoint Net’s hidden channel
dimension, respectively, with G=4 and 256 channels yield-
ing the best overall results.

Channel Dim. | AUC
128 69.3
256 75.5
512 74.4

Table A3. Average AUC on the Panda dataset for different values
of the Keypoint Net’s hidden channel dimension.

801
704
8 60
<
w
o
L 50
o]
< 0 158%
| —e— No Pre-Training
©— Random Mask Pre-Training
301 —e— No Mask Fine-Tuning 64%
'q
201 —o— RoboPEPP 169%
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Occlusion Ratio

Figure A2. AUC comparison of the distance metric under varying
occlusion levels, evaluated on the dataset in Sec. 4.2.3. Percent-
ages next to the lines indicate the relative drop in each method’s
performance compared to their performance without occlusions.

o
s}

o
o

Angle Error

Figure A3. Average AUC and Joint Angle errors on the Panda
dataset for different values of Joint Net’s G.

A6. Additional Qualitative Comparison

In this section, we provide additional examples of qualita-
tive comparisons. Fig. A4 presents examples from the oc-
clusion dataset discussed in Sec. 4.2.3. Fig. A5 shows com-
parisons on the Franka Photo dataset, while Fig. A6 high-
lights results on the real-world datasets Franka RS and AK.
Lastly, Fig. A7 focuses on real-world images of the Franka
robot collected in the lab under highly cluttered and oc-
cluded conditions. For all examples, comparisons are made
against RoboPose [S5] and HPE [S3]. Rectangles are used
to emphasize areas where these methods perform poorly,
while RoboPEPP shows higher accuracy.

References

[S1] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bo-
janowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and
Nicolas Ballas. Self-supervised learning from images with
a joint-embedding predictive architecture. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15619-15629, Vancouver, Canada,
2023. 1

[S2] Jimmy Lei Ba. Layer normalization.
arXiv:1607.06450, 2016. 1

[S3] Shikun Ban, Juling Fan, Xiaoxuan Ma, Wentao Zhu, Yu
Qiao, and Yizhou Wang. Real-time holistic robot pose es-

arXiv preprint

[S4]

[S3]

[S6]

[S7]

[S8]

[S9]

timation with unknown states. In European Conference on
Computer Vision, pages 1-17, Malmo, Sweden, 2024. 3, 4
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Proceedings of
the International Conference on Learning Representations,
2020. 1

Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Single-view robot pose and joint angle estimation via
render & compare. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1654-1663, 2021. 3,4

Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. In Proceedings of the International
Conference on Learning Representations, 2022. 1

Timothy E Lee, Jonathan Tremblay, Thang To, Jia Cheng,
Terry Mosier, Oliver Kroemer, Dieter Fox, and Stan Birch-
field. Camera-to-robot pose estimation from a single im-
age. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 9426-9432, Paris, France,
2020. 2,3

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding Dino: Marrying dino with
grounded pre-training for open-set object detection. arXiv
preprint arXiv:2303.05499, 2023. 2

I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 1

Input Image RoboPose

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Figure A4. Qualitative Comparison on Occlusion dataset: Predicted poses and joint angles are used to generate a mesh overlaid on the
original image, where closer alignment indicates greater accuracy. Highlighted rectangles indicate regions where other methods’ meshes
misalign, while RoboPEPP achieves high precision.

Input Image RoboPose HPE RoboPEPP

Example 1

Example 2

, l\
)
/4 . /
Figure A5. Qualitative Comparison on Panda Photo dataset: Predicted poses and joint angles are used to generate a mesh overlaid

on the original image, where closer alignment indicates greater accuracy. Highlighted rectangles indicate regions where other methods’
meshes misalign, while RoboPEPP achieves high precision.

_

Example 3

Input Image RoboPEPP

Figure A6. Qualitative Comparison on Panda RS (Example 1 and 2) and Panda AK (Example 3) datasets: Predicted poses and
joint angles are used to generate a mesh overlaid on the original image, where closer alignment indicates greater accuracy. Highlighted
rectangles indicate regions where other methods’ meshes misalign, while RoboPEPP achieves high precision.

Input Image RoboPose RoboPEPP

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Figure A7. Qualitative Comparison on Additional Real-World Images: These images are collected in highly cluttered environments
with robot occlusions. Predicted poses and joint angles generate a mesh overlaid on the original image, where closer alignment indicates
greater accuracy. Highlighted rectangles indicate regions where other methods’ meshes misalign, while RoboPEPP achieves high precision.

	Encoder and Predictor Architectures
	Training Settings
	Region of Interest Detection
	Dataset Details
	Additional Results
	Mean ADD
	Ablation: Occlusion Robustness
	Ablation: Joint Net and Keypoint Net

	Additional Qualitative Comparison

