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8. Per Structure DICE Box Plot
To provide a more comprehensive picture of how differ-
ent registration algorithms perform for different brain struc-
tures or organs (instead of purely reporting averages) Figs. 5
and 6 show anatomy-specific boxplots. We observe espe-
cially strong performance for CARL on the Abdomen1k
dataset (Fig. 6) with excellent registration results for liver,
kidney, and spleen.

9. Resolution, Downsampling & Coordinates
We use an internal convention that regardless of resolution,
images have coordinates ranging from (0, 0, 0) to (1, 1, 1).
Thus, a transform, a function from [0, 1]D → R

N , can
be applied to an image of any resolution. This allows us
to construct a multiresolution, multi-step registration algo-
rithm using TwoStep and the operator Downsample defined
in [11] as

Downsample{!}[IM, IF]

= ![averagePool(IM, 2), averagePool(IF, 2)] . (19)

TwoStep{!,”}[IM , IF ]

= ![IM , IF ] ↑ ”[IM ↑ ![IM , IF ], IF ] . (20)

10. Implementing the diffeomorphism-to-
diffeomorphism case

We can use coordinate attention to solve the
diffeomorphism-to-diffeomorphism registration prob-
lem with a neural network #F (shown in the left part of
Fig. 7).

The input functions IM, IF, and the output transform
are approximated as arrays of voxels. The functional #
such that #[IM , IF ] := (IM )→1

↑ IF (which only oper-
ates on images that are diffeomorphic) can be directly im-
plemented, without training, using standard neural network
components. We refer to this implementation as #F . The
intention is to map each voxel in the moving image into a
high dimensional vector that will have a large dot product
with the corresponding voxel in the fixed image with the
same value, and then compute the attention matrix with the
embedded fixed image voxels as the queries and the em-
bedded moving image voxels as the keys. Subsequently,
we can compute the center of mass of the attention masks
(i.e., where each fixed image voxel matches on the moving
image) by setting the values to be the raw coordinates of
the moving image voxels. We choose for the embedding a
1 ↓ 1 convolution with large weights followed by a sine-
nonlinearity, which has the desired property of two vectors

having a large dot product only when their input intensities
are similar. Because our images are diffeomorphisms, we
know a-priori that the input intensity of our moving image
will only be close to intensities of the fixed image in a small
region. We verify that this network, without any training,
reproduces # when applied to input images that are diffeo-
morphisms, see Fig. 7 (right).

10.1. Limitation on equivariance feasibility

In Sec. 10, we turned images into features using 1 ↓ 1 con-
volution followed by a sine nonlinearity which, since it is
a function applied pointwise, is perfectly equivariant. This
worked since the images to be registered were diffeomor-
phisms, and hence each intensity vector was unique. How-
ever, since, as we are about to prove, we cannot achieve
equivariance to arbitrary diffeomorphisms for registering
real images, we have to sacrifice some equivariance in order
to expand the set of valid inputs. This drives our choice to
target translation and rotation equivariance out of the set of
possible diffeomorphisms.

Claim. It is impossible to have an algorithm that is
[W,U ] equivariant to any non-identity class of transforms
and can be applied to arbitrary images.

Counterexample. Assume that ! is a [W,U ] equivari-
ant algorithm for all W,U ↔ diffeomorphisms, and that is
valid for all input images. We ask it to register the images
IM, IF := 0. Then, for a non identity W and U picked to be
identity,

![IM, IF] = W→1 ↑ ![IM
↑ W, IF

↑ U ] ↑ U (21)

![IM, IF] = W→1 ↑ ![IM
↑ W, IF] (22)

![0, 0] = W→1
↑ ![0, 0] (23)

id = W→1 , (24)

where 0 indicates an image that is zero everywhere. This
yields a contradiction.

Claim. It is impossible to have an algorithm that is
[W,U ] equivariant to rotations and can be applied to rota-
tionally symmetric images.

Counterexample. Assume that ! is a [W,U ] equivariant
algorithm for all W,U ↔ rotations, and that ! is valid for
input images including at least one rotationally symmetric
image IM (such that for a non identity W, IM

↑ W = IM.)
We ask it to register the images IM, IF. Then, for a non
identity W with respect to which IM is symmetric and U



Figure 5. Per structure DICE scores on the HCP dataset. CARL ranks well on most structures.

picked to be identity,

![IM, IF] = W→1
↑ ![IM

↑ W, IF
↑ U ] ↑ U (25)

![IM, IF] = W→1
↑ ![IM

↑ W, IF] (26)

![IM, IF] = W→1
↑ ![IM, IF] (27)

id = W→1 , (28)

This yields a contradiction, as we assumed W was not iden-
tity.

We conclude that there is a tradeoff. If there is a valid
input image I and a nonzero transform T such that I ↑ T =
I , then T cannot be in the class of transforms with respect
to which ! is [W,U ] equivariant. For a simple example,
an algorithm that registers images of perfect circles cannot
be [W,U ] equivariant to rotations. For a practical example,
since brain-extracted brain images have large areas outside
the brain that are exactly zero, algorithms that register such
preprocessed brain images cannot be [W,U ] equivariant to
transforms that are identity everywhere in the brain but have
deformations outside the brain. To modify #F so that it can
apply to a broader class of images other than ”images that
happen to be diffeomorphisms”, we thus have to restrict the
transforms with respect to which it is [W,U ] equivariant.

10.2. Guarantee given equivariance
While it is unfortunate that we cannot achieve [W, U] equiv-
ariance to arbitrary diffeomorphisms for arbitrary input im-
ages, there is great advantage to expanding the group of
transforms T with respect to which our algorithm is [W,
U] equivariant. The advantage is as follows: for any input
image pair IM, IF where the images can be made to match
exactly by warping IM by a transform U in T , an algorithm
that outputs the identity map when fed a pair of identical im-
ages and is [W,U ] equivariant with respect to T will output
U for IM, IF. We see this as follows.

Assume ! outputs the identity transform when fed iden-
tical fixed and moving images and [W,U ] equivariant with
respect to T , and IM

↑ U = IF for a U ↔ T . Then

![IM, IF] (29)

= ![IM, IM
↑ U ] (30)

= ![IM, IM] ↑ U (31)
= U , (32)

where ![IM, IM
↑U ] = ![IM, IM] ↑U holds because of the

[W,U ] equivariance with W being the identity transform.
We note that before training, the CARL architecture em-

phatically does not have the property of outputting the iden-



Figure 6. Per structure DICE scores on the Abdomen1k dataset. We observe that CARL is dramatically ahead of competing methods on
liver, kidney, and spleen registration, but performs meaninfully worse than Voxelmorph on the pancreas.
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Figure 7. Left: Neural network !F implementing !. Right: Result of registering the 1-dimensional ”images” IM : [0, 1] → [0, 1], x ↑→
cos(ω2 x) and IF : [0, 1] → [0, 1], x ↑→ x + 0.07 sin(3ωx) via ! and !F , illustrating that the resulting maps are equivalent. ! is
computable here as these images are invertible and smooth. The neural network output (gold) closely matches the analytical solution (i.e.,
![IM, IF] = IM→1 ↓ IF = 2

ω cos→1(x+ 0.07 sin(3ωx)), gray). Best-viewed in color.

tity map when fed identical images: instead, it learns this
property from the regularizer during training.

11. Performance implications of two step regis-
tration

We observed in Sec. 6.1 that #ω trains significantly bet-
ter as the beginning of a multistep algorithm than on its
own. Here, we examine why that may be, while remov-
ing as much complexity as possible. Our finding suggests



that two step registration assists training by functioning as
a similarity measure with better capture radius.

First, we briefly train a single step network ! on the
Baseline task from Sec. 6.1, i.e. we stop training before
convergence. Then, we examine the loss landscape of a triv-
ial ”fixedTranslation” neural network ω to register Baseline.
This network has a single parameter, t, and it ignores its in-
put images and always shifts images to the right by t: that
is

ω [IM, IF](εr) = εr +

[
t
0

]
. (33)

The optimal value of t is zero since there is no bias to-
wards left or right shift of images in this dataset- but if we
were to train ω on LNCC similarity, how well would the
gradients drive t to zero?

We plot LNCC(IM
↑ ω [IM, IF], IF) against t com-

pared to LNCC(IM
↑ TwoStep{ω,!}[IM, IF], IF).

We also plot ε
εtLNCC(IM

↑ ω [IM, IF], IF) and
ε
εtLNCC(IM

↑ TwoStep{ω,!}[IM, IF], IF) using
PyTorch’s back-propagation. Fig. 8 shows the result indi-
cating that multi-step registration results in better capture
radius.

We conjecture that when two step network
TwoStep{ω,!} is trained with an LNCC loss, the
loss function seen by ω is not simply LNCC, but instead
the loss function seen by ω is actually the performance
of ! (which is measured by LNCC), which is an implicit
loss function with a better capture radius than the original
LNCC loss function.

12. Computational Budget
Each 100,000 step training run of CARL takes 14 days on 4
RTX A6000 GPUs or 6 days on four A100 GPUS. In total,
336 GPU days were spent developing the CARL architec-
ture and training the final models.

An additional 45 GPU days were spent training com-
parison methods. 14 server days were spent training Key-
Morph variants, although the published KeyMorph code is
io-bound and did not significantly load the server’s GPU.

13. Comparison Methods Details
13.1. Abdomen1k
For Abdomen1k, we trained all methods using their pub-
lished code and default hyperparameters.

13.2. DirLab Lung
On the DirLab challenge set, all results of comparison meth-
ods are taken from the literature. Results of ANTs, Elastix,
Voxelmorph, and LapIRN are from [36]. The remainder are
from their original publications.

Figure 8. The loss of TwoStep{ε,”} (i.e., translation before
network) as a function of t is much better behaved than the loss
of ε (i.e., translation) as a function of t. The capture radius of the
former is larger and the loss is overall smoother close to the correct
solution as shown on the bottom.

13.3. HCP
On HCP, we evaluated ANTs using code from [36]. Re-
sults of GradICON, and ConstrICON are from the Con-
strICON publication. We evaluated KeyMorph by training
a model on the HCP Dataset using KeyMorph’s published
code and hyperparameters for the IXI dataset. We evaluated
Easyreg using its published weights, which are advertised
to be appropriate for the HCP dataset. We measured the
equivariance of the GradICON method using GradICON’s
published code and weights.

14. Abdomen 1k Test Pairs
We used the following 30 image pairs to evaluate our ab-
domen registration experiments.

00817 00872, 00808 00832, 00815 00863, 00857 00860,
00883 00848, 00826 00812, 00862 00803, 00849 00855,
00877 00800, 00857 00834, 00829 00875, 00813 00840,



00803 00802, 00803 00883, 00869 00801, 00848 00887,
00827 00854, 00803 00867, 00828 00856, 00863 00870,
00829 00844, 00829 00886, 00828 00858, 00837 00802,
00853 00871, 00882 00812, 00823 00880, 00837 00815,
00842 00864, 00854 00864

15. Extension to Rotational Equivariance

The first solution to obtain a registration network that ex-
hibts rotation equivariance that comes to mind is to simply
augment the training dataset with random rotations, and see
if the network can still register it. This conceptually works
fine for our main training with GradICON regularization,
but breaks when directly applied to our diffusion regular-
ized pretraining (which is empirically required for training a
coordinate attention layer). That is , the training loss would
look like

R,Q ↗ Uniform(Rotations) (34)

IM , IF ↗ Dataset

ÎM , ÎF := (IM ↑ R), (IF ↑ Q)

minimize : Lsim(ÎM ↑ ![ÎM , ÎF ], ÎF ) + Lreg(![ÎM , ÎF ])

This cannot be reliably trained with a diffusion regularizer,
because to align ÎM to ÎF will require transforms with Ja-
cobians of the transformation map that are very far from the
identity map as they will need to express large-scale rota-
tions.

Our proposed solution is to move the augmentation ”in-
side” the losses, in the following sense:

First, expand our augmented images ÎM , ÎF

R,Q ↗ Uniform(Rotations)

IM , IF ↗ Dataset
minimize :

Lsim((IM ↑ R) ↑ ![IM ↑ R, IF ↑ Q], IF ↑ Q)

+ Lreg(![IM ↑ R, IF ↑ Q]) (35)

In this expanded form, change to the following:

R,Q ↗ Uniform(Rotations)

IM , IF ↗ Dataset
minimize :

Lsim(IM ↑ (R ↑ ![IM ↑ R, IF ↑ Q] ↑ Q→1, IF )

+ Lreg(R ↑ ![IM ↑ R, IF ↑ Q] ↑ Q→1) (36)

Then, collect like terms. It becomes clear that the augmen-

tation is now inside the loss and connected to the network.

R,Q ↗ Uniform(Rotations)

IM , IF ↗ Dataset

!̂[IM , IF ] := R ↑ ![IM ↑ R, IF ↑ Q] ↑ Q→1 (37)

minimize : Lsim(IM , !̂[IM , IF ], IF ) + Lreg(!̂[IM , IF ])

Now, while ! outputs large rotations, on a rotationally
aligned dataset !̂ outputs transforms with Jacobians near
the identity, and so can be trained with diffusion regulariza-
tion.

16. Improved Extrapolation of Displacement
Fields

Displacement fields (disp) are stored as grids of vectors as-
sociated with coordinates in [0, 1]D. In ICON [11], Greer
et al. noted that the method of extrapolating when eval-
uating a transform outside of this region is important when
composing transforms, since transforms such as translations
and rotations move some coordinates from inside [0, 1]D to
outside it. They propose coordinate by coordinate clipping
before interpolating into the displacement field

ϑdisp(x) = x + interpolate(disp, clip(x, 0, 1)) . (38)

This formulation has a discontinuous Jacobian on the
boundary of [0, 1]D, and in particular results in non-
invertible transforms on the boundaries for large rotations.

We instead propose

clip(x) = x ↘

{
x if x < 0

0, otherwise
↘

{
(x ↘ 1) if x > 1

0, otherwise
(39)

reflect(x) = x ↘

{
2x if x < 0

0, otherwise
↘

{
2(x ↘ 1) if x > 1

0, otherwise
(40)

ϑdisp(x) = x + 2 interpolate(disp, clip(x)) (41)
↘ interpolate(disp, reflect(x)) (42)

which is identical inside [0, 1]D but has continuous Jaco-
bian over the boundary.

17. Investigation of internal features of !ω

We use interpretability techniques to investigate the features
learned by the convolutional encoder Conv of #ω. Two
images are selected from the Abdomen1k test set, and in-
dependently encoded using the convolutional network. We
convert these images into features using Conv. From these



Figure 9. A linear probe is used to aid interpretability of the fea-
tures learned by the convolutional encoder. The linear probe is
trained on one image, and then its output heat maps are visualized
on another image. The red, green, and blue channels are used to
indicate the liver, kidney, and spleen respectively. The grey chan-
nel is used to indicate the pancreas, although no direction is found
in the features that segments it.

voxelwise features, we train linear probes to segment the
kidneys, liver, pancreas, and spleen of a single train image

Figure 10. Sample attention masks from inside the coordinate
attention block of CARL trained on Abdomen1k. The masks are
compact, justifying the claim on which we build Sec. 5.

by minimizing least squares error between ground truth and
predicted label, and then visualize the probe’s output on a
second test image. This linear probe suggests (see Fig. 9)
that the features, which were learned without any segmen-
tations, include directions that measure liver-ness, spleen-
ness, and kidney-ness, but there is no pancreas-direction.
This may explain why our model is less accurate at register-
ing the pancreas than the other organs.

17.1. Verification that #ω’s attention masks are com-
pact

As an assumption in Sec. 5 was that post training, attention
masks are spatially compact. We verify this by computing
the attention masks associated with the query vectors of 25
random voxels when registering the pair in Fig. 9, maxi-
mum intensity projecting them to get 2-D heatmaps, and
plotting. As expected, we see in Fig. 10 that each pixel
in the moving image attends to a small region in the fixed
image. As a result, these attention masks will not immedi-
ately interact with the boundary of the padded feature vol-
ume when an image is translated. This property is required
for [W, U] equivariance.



18. Fully elaborated proof that Coordinate attention is [W, U] equivariant

Previously, we elided the difference between two definitions of an image: a function from [0, 1]D → R suitable for composi-
tion with transforms, and a function from voxel indices to intensities suitable for discrete convolution and attention. Here, we
fully make this distinction explicit. We will continue to consider images to be continuous, and discretize them as necessary
by composing them with or interpolating them at the function coords which maps voxel indices to coordinates in [0, 1]D.
This explicit style makes clear that the proof is formally correct, and also more directly maps to the implementation. We use
the linear interpolation function interpolate(points, values, x) where x is the spatial location where we evaluate, and points
and values are the locations where we know the value of the function (typically a grid).

Assumptions: We assume that the feature encoders are translation equivariant like

Convω(I ↑ U) = Convω(I) ↑ U . (43)

Without positional embeddings or causal masking, (we do not use either) the attention mechanism is equivariant to per-
mutations as follows: for P1, P2 permutations; and the output and K (Key), Q (Query), and V (Value) inputs represented
each as a function from an index to a vector, and an attention block represented as T,

T[K ↑ P1, Q ↑ P2, V ↑ P1] = T[K,Q, V ] ↑ P2 . (44)

In plain language, changing the order of the queries causes the order of the output of the attention operation to have its
order changed in the same way, and changing the order of the keys and values has no effect as long as they are changed
together.

Additionally, because the attention weights in an attention block sum to 1, for an affine function f , we have
Lemma:

T[K,Q, f ↑ V ] = f ↑ T[K,Q, V ] . (45)

Proof of lemma: Once attention weights wi are computed, for each output token we produce a weighting function W

W (xi . . . ) =
∑

j

wjxj (46)

where wi sum to 1.
We also have an affine function f, that is

f(x) = Ax + b (47)

We then observe that b is preserved and hence f ↑ W = W ↑ f as long as wi sum to 1.
Finally, we assume that the attention mask associated with each query vector has small spatial support. Finding a training

procedure that reliably fulfilled this assumption across different datasets was nontrivial: we find that this assumption is satis-
fied after regularizing the network end-to-end with diffusion regularization for the first several epochs, and using GradICON
regularization thereafter. This is a crucial empirical result that we find evidence for in Fig. 10

With these assumptions, we prove that #ω is [W,U ] equivariant to translations below.
Proof: A translation W by an integer number of voxels is both affine when seen as an operation on coordinates, Wx ↑↓x+r,

and a permutation of the voxels when seen as an operation on voxel images Wpermutation (as long as we can neglect boundary
effects). The map from indices to coordinates, coords, serves as the bridge between these two representations of a transform
(Wx ↑↓x+r ↑ coords = coords ↑ Wpermutation). As long as the attention masks have small spatial support (and hence do not
interact with the boundary), we can suppress boundary effects by padding with zeros before applying the operation. So, for
translations W and U , we have

#ω[I
M , IF ](x) := interpolate(coords,T[Convω(I

M
↑ coords),Convω(I

F
↑ coords), coords], x) ,



Figure 11. We directly confirm CARL is [W,U ] and GradICON is [U,U ] equivariant to translation on the deformed retina dataset.

from which we establish that #ω is [W,U ] equivariant with respect to translation as follows:

#ω[I
M

↑ W, IF ↑ U ](x) = interpolate(coords,T[Convω(I
M

↑ Wx ↑↓x+r ↑ coords),Convω(I
F

↑ Ux ↑↓x+r ↑ coords), coords], x)

= interpolate(coords,T[Convω(I
M

↑ coords ↑ Wpermutation),Convω(I
F

↑ coords ↑ Upermutation), coords], x)

(43)
= interpolate(coords,T[Convω(I

M
↑ coords) ↑ Wpermutation,Convω(I

F
↑ coords) ↑ Upermutation, coords], x)

(45)
= interpolate(coords,W→1

x ↑↓x+r ↑ T[Convω(I
M

↑ coords) ↑ Wpermutation,Convω(I
F

↑ coords) ↑ Upermutation,Wx ↑↓x+r ↑ coords], x)

= W→1
x ↑↓x+r ↑ interpolate(coords,T[Convω(I

M
↑ coords) ↑ Wpermutation,Convω(I

F
↑ coords) ↑ Upermutation,Wx ↑↓x+r ↑ coords], x)

= W→1
x ↑↓x+r ↑ interpolate(coords,T[Convω(I

M
↑ coords) ↑ Wpermutation,Convω(I

F
↑ coords) ↑ Upermutation, coords ↑ Wpermutation], x)

(44)
= W→1

x ↑↓x+r ↑ interpolate(coords,T[Convω(I
M

↑ coords),Convω(I
F

↑ coords) ↑ Upermutation, coords], x)

(44)
= W→1

x ↑↓x+r ↑ interpolate(coords,T[Convω(I
M

↑ coords),Convω(I
F

↑ coords), coords] ↑ Upermutation, x)

= W→1
x ↑↓x+r ↑ interpolate(coords ↑ U→1

permutation,T[Convω(I
M

↑ coords),Convω(I
F

↑ coords), coords], x)

= W→1
x ↑↓x+r ↑ interpolate((Ux ↑↓x+r)

→1
↑ coords,T[Convω(I

M
↑ coords),Convω(I

F
↑ coords), coords], x)

= W→1
x ↑↓x+r ↑ interpolate(coords,T[Convω(I

M
↑ coords),Convω(I

F
↑ coords), coords], Ux ↑↓x+r(x))

= W→1
↑ #ω[I

M , IF ] ↑ U .
(48)

Again, the same argument can also be applied to [W,U ] equivariance to axis aligned ϖ or ϑ
2 rotations, provided that Convω

is replaced with an appropriate rotation equivariant encoder.

Table 2. CARL: ablation of final refinement layer (no IO)

Abdomen1k DICE HCP DICE DirLab mTRE L2R DICE

w/o final refinement 74.1 78.8 2.58 49
with final refinement 75.7 79.6 1.88 50



Moving Image Warped (CARL) Grid (CARL) Fixed Image

Figure 12. Detailed figures of our results on Abdomen1k (cases 00817 00872) and DirLAB case 1



Moving Image Warped (CARL{ROT} IO) Grid (CARL{ROT} IO) Fixed Image

Moving Image Warped (CARL IO) Grid (CARL IO) Fixed Image

Figure 13. Detailed figures of our results on HCP with the moving image synthetically rotated by 45 degrees. Both CARL(IO) and
CARL{ROT}(IO) handle a 45 degree rotation well. This is especially remarkable for CARL(IO), which is far out of its training distribution.
45 degrees is empirically the limit of CARL’s tolerance for rotations, while CARL{ROT}’s DICE is unaffected by arbitrary rotations, as
seen in Fig. 4. Also, observe that CARL{ROT}’s formal equivariance to rotation causes its deformation grid to move rigidly with the brain
in the negative space surrounding it.



Moving Image Warped (GradICON IO) Grid (GradICON IO) Fixed Image

Figure 14. In contrast, GradICON cannot adapt to a 45 degree rotation which was outside its training distribution.
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