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Supplementary Material

In this document, we present supplementary results and
analyses to complement the main paper. Sec. 7.1 provides
a complexity analysis of HOTFormerLoc, Sec. 7.2 pro-
vides visualisations of our cylindrical octree attention, and
Secs. 7.3 and 7.4 provide ablations of our pyramidal pool-
ing and network size. Sec. 7.5 addresses the limitations and
potential future work of our method. We include visualisa-
tions of our CS-Wild-Places dataset in Sec. 8. Qualitative
examples highlighting components of HOTFormerLoc, and
analysis of the learned attention patterns supported by visu-
alisations are presented in Secs. 9 and 10.

7. HOTFormerLoc Additional Details
7.1. Complexity Analysis
Here, we provide a complexity analysis of the components
introduced in Sec. 3.2 of the paper. The key to the effi-
ciency of our approach is alleviating the O(N2C) complex-
ity of full attention, which is intractable for point clouds
with large values of N , e.g. 30K. This number of points
is essential to capture distinctive information in forest en-
vironments. Our H-OSA layer computes windowed at-
tention between non-overlapping windows of size k and
their corresponding relay tokens, reducing the complexity
to O((k+1)2N

k C). To facilitate global attention at reduced
cost, we conduct RTSA on the relay tokens from L levels of
the feature pyramid, with complexity O(LN2

k2 C).
Our HOTFormer block thus has a total cost of O(L(k +

1)2N
k C + LN2

k2 C). This reduces the quadratic cost rela-
tive to N by a factor of k2, but this effect diminishes when
N ≫ k. For this reason, we opt to employ HOTFormer
blocks after first processing and downsampling the N input
points into Nd octants with the convolution embedding stem
and a series of OSA transformer blocks (similar to H-OSA
but with relay tokens disabled), where Nd < N . This ap-
proach allows us to efficiently initialise strong local features
in early stages when semantic information is less developed,
which can then be refined by HOTFormer blocks once the
size of N is less prohibitive. Another approach would be to
consider a larger k for HOTFormer blocks at the finest reso-
lution where N is largest, and smaller values of k at coarser
levels, but in this study we have elected to keep k constant
throughout the network.

7.2. Cylindrical Octree Attention
In Fig. 6 we visualise the relationship between the cylin-
drical octree hierarchy (albeit in 2D) up to depth 3, and
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Figure 6. Cylindrical Octree Hierarchy and proposed attention
mechanisms shown in 2D for simplicity (3D extends with z-axis,
so technically the above is a quadtree). Cylindrical partitions and
tree nodes are color-matched.

corresponding attention windows with window size k = 3
(grouped by color) following z-ordering as described in
Sec. 3.2. The HOTFormerLoc structure detailed in Fig. 2
can be used interchangeably with Cartesian or cylindrical
octree attention windows.

7.3. Pyramid Attentional Pooling
We provide an ablation of our pyramid attention pooling
(proposed in Sec. 3.3) in Tab. 9, using different numbers of
pooled tokens q on Oxford [33], CS-Campus3D [13] and
CS-Wild-Places. Overall, we find q = [74, 36, 18] to pro-
duce the best results across most datasets, although q =
[148, 72, 36] performs marginally better on CS-Campus3D.

These multi-scale pooled tokens Ωl are concatenated to
form Ω′ and processed by the token fuser [1], generating
qtotal = 128 tokens with C = 256 channels in our default
configuration. In the MLP-Mixer [47], the channel-mixing
and token-mixing MLPs project these tokens to k̄ = 32
and C̄ = 8, which are then flattened and L2-normalised to
produce the 256-dimensional global descriptor dG .

7.4. HOTFormerLoc Ablations
We provide ablations on the number of HOTFormer blocks
and channel size in Tab. 10. HOTFormerLoc maintains
SOTA performance with fewer parameters than the full-
sized model, outperforming MinkLoc3Dv2 by 22.7% on

Oxford CS-Campus3D CS-Wild-Places
Pooled Tokens AR@1 (Mean) ↑ AR@1 ↑ AR@1 (Mean) ↑

74, 36, 18 92.1 79.8 60.5
148, 72, 36 91.1 80.4 52.7

296, 144, 72 89.8 74.9 48.4

Table 9. Ablation study considering the number of pooled tokens
used for pyramid attentional pooling on Oxford, CS-Campus3D
and CS-Wild-Places.



Runtime Oxford CS-Campus3D CS-Wild-Places
Channels Blocks Params (Sparse / Dense) AR@1 (Mean) AR@1 AR@1(Mean)
C = 256 M = 10 35.4 M 62 / 270 ms 92.1 (↑2.1) 80.4 (↑9.7) 60.5 (↑8.5)
C = 256 M = 8 28.9 M 50 / 250 ms 91.8 (↑1.8) 75.5 (↑4.8) 58.9 (↑6.9)
C = 256 M = 6 22.6 M 41 / 228 ms 91.5 (↑1.5) 71.9 (↑1.2) 57.6 (↑5.6)
C = 192 M = 8 16.7 M 40 / 192 ms 90.8 (↑0.8) 75.2 (↑4.5) 58.1 (↑6.1)

Table 10. Ablation on number of HOTFormer blocks and channel
size. (↑X.X) indicates improvement in AR@1 over SOTA method
per-dataset.

CS-Campus3D and 6.1% on CS-Wild-Places with just
16.7M params. This parameter count is similar to exist-
ing transformer-based LPR methods [21, 56], whilst outper-
forming them by 32.2% on CS-Campus3D. We also report
the runtime on dense point clouds from CS-Wild-Places,
and the sparse point clouds from CS-Campus3D, with HOT-
FormerLoc achieving 40−62ms inference time when lim-
ited to 4096 points.

7.5. Limitations and Future Work
While HOTFormerLoc has demonstrated impressive perfor-
mance across a diverse suite of LPR benchmarks, it has
some limitations. The processing of multi-grained feature
maps in parallel is a core design of HOTFormerLoc, and
while effective, it causes some redundancy. For example,
there is likely a high correlation between features repre-
senting the same region in different levels of the feature
pyramid. Currently, these redundant features can be fil-
tered by the pyramid attentional pooling layer, but this does
not address the wasted computation earlier in the network
within HOTFormer blocks. In future work, token pruning
approaches can be adopted to adaptively remove redundant
tokens, particularly at the finest resolution where RTSA is
most expensive to compute.

Another source of redundancy is related to the number
of parameters in our network. A large portion of these are
attributed to the many transformer blocks, as each pyramid
level has its own set of H-OSA layers with channel size C =
256. In the future, the parameter count can be reduced by
utilising different channel sizes in each level of the feature
pyramid, with linear projections to align the dimensions of
relay tokens during RTSA.

As mentioned in Sec. 5.1, the runtime of HOTFormerLoc
can be improved through parallelisation. While our design
is best suited for parallel implementation, currently, the H-
OSA layers for each pyramid level are computed in serial.
To unlock the full potential of our network design for op-
timal runtime, these layers can be combined into a single
operation. Furthermore, the octree implementation used in
HOTFormerLoc can be parallelised to enable more efficient
octree construction.

8. CS-Wild-Places Dataset Visualisations
We provide additional visualisations of our CS-Wild-
Places dataset, highlighting its unique characteristics. In
Fig. 7, we compare a section of the ground and aerial global

Figure 7. Matched portions of the ground (top) and aerial (bot-
tom) global maps from Karawatha forest in CS-Wild-Places. The
aerial maps cover a significantly larger area than the ground traver-
sals, increasing the likelihood of false positive retrievals. Maps are
shifted along z for visualisation purposes.

maps from Karawatha. One notable feature of our dataset
is the large-scale aerial coverage, creating a challenging re-
trieval task where ground queries must be matched against
potentially tens of thousands of candidates.

In Fig. 8, we exhibit the scale and point distribution of
all four forest environments in the CS-Wild-Places dataset.
The Baseline forests have a combined aerial coverage of
3.1 km2, while the Unseen forests add a further 0.6 km2 of
aerial coverage. Submaps visualised from each forest show-
case the distinct distributional differences between environ-
ments. Additionally, the limited overlap between ground
and aerial perspectives clearly demonstrate why ground-to-
aerial LPR in forested areas is challenging. Notably, our
dataset is the first to provide high-resolution aligned aerial
and ground lidar scans of this scale in forested environ-
ments, offering a valuable benchmark for training and eval-
uating place recognition approaches.

9. Attention Map Visualisations
We provide visualisations of the local and global attention
patterns learned by HOTFormerLoc in Figs. 9 to 11. In
Fig. 9, we analyse the attention patterns learnt by RTSA
for a submap from the Oxford dataset [33] to verify the in-
tuition behind relay tokens. Here, we visualise the atten-
tion scores of the multi-scale relay tokens within the octree
representation for each level of the feature pyramid (where
points represent the centroid of each octant, for ease of visu-
alisation). We select a query token (highlighted in red), and
colourise other tokens in all pyramid levels by how strongly
the query attends to each (yellow for strong activation, pur-
ple for weak activation). We compare the attention patterns
of this query token from the first, middle, and last RTSA
layer in the network.
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Figure 8. (Top row) bird’s eye view of aerial maps from all forests of CS-Wild-Places. (Bottom row) ground and aerial submap from each.
Our dataset features high-resolution ground and aerial lidar scans from four diverse forests, with major occlusions between viewpoints.

We see that RTSA learns a local-to-global attention pat-
tern as it progresses through the network. In the first RTSA
layer, the query token primarily attends to other neighbour
tokens of the same granularity. In the middle RTSA layer,
the local neighbourhood is still highly attended to, but we
see higher attention to distant regions in level 2 of the fea-
ture pyramid with coarser granularity. In the final layer, the
query token primarily attends to tokens in the coarsest level
of the pyramid, taking greater advantage of global context.
We provide further visualisations of the attention matrices
from RTSA in Fig. 10, which highlights the multi-granular
attention patterns learnt by different attention heads as to-
kens propagate through the HOTFormer blocks.

In Fig. 11, we visualise the attention patterns of H-OSA
layers, comparing the patterns learnt for different local at-
tention windows as tokens pass through each HOTFormer
block. In particular, the presence of strong local dependen-
cies is indicated by square regions with high activations.
Interestingly, the relay token (top- and left-most element of
each matrix) is uniformly attended to by the local tokens in
each window, but with gradually higher attention values in
later HOTFormer blocks, indicating the shift towards learn-
ing global context in later stages of the network.

10. Octree Attention Window Visualisations

In Fig. 12 and Fig. 13 we visualise Cartesian and cylindrical
octree attention windows generated on real submaps from
Oxford [33] and Wild-Places [26]. On the Oxford dataset,
which features highly structured urban scenes with flat ge-
ometries (such as walls), Cartesian octree windows are a
better representation of the underlying scene. Point clouds
in Oxford are generated by aggregating 2D lidar scans, as
opposed to a single scan from a spinning lidar, producing a
uniform point distribution. Furthermore, at coarser levels,
the cylindrical octree distorts the flat wall on the left side

Pyramid level 1 (depth 6) Pyramid level 2 (depth 5) Pyramid level 3 (depth 4)
Multi-scale relay token attention maps - heads averaged - block 1

(a) First RTSA block
Pyramid level 1 (depth 6) Pyramid level 2 (depth 5) Pyramid level 3 (depth 4)

Multi-scale relay token attention maps - heads averaged - block 5

(b) Mid RTSA block
Pyramid level 1 (depth 6) Pyramid level 2 (depth 5) Pyramid level 3 (depth 4)

Multi-scale relay token attention maps - heads averaged - block 10

(c) Last RTSA block

Figure 9. Relay token multi-scale attention visualised on the octree
feature pyramid at different layers in the network, colourised by
attention weight relative to the red query token (brighter colours
indicate higher weighting). The network learns a local-to-global
attention pattern from the first to last layer.

of the scene to appear as though it is curved. For these rea-
sons, we find that Cartesian octree attention windows per-
form best on this data.

In contrast, we see the advantage of cylindrical octree at-
tention windows on a submap from Wild-Places in Fig. 13.
In the red circled region, it is clear that the coarsest level
of the cylindrical octree better represents the shape and dis-
tribution of circular lidar scans than the Cartesian octree.
Further, the size of each cylindrical attention window re-
flects the density of points, with smaller, concentrated win-
dows near the centre, and larger, sparse windows towards
the edges of the scene. In contrast, the Cartesian attention
windows all cover a similar sized region.
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Figure 10. Multi-scale relay token attention matrices from different
RTSA heads and blocks for a submap from Oxford. Attention heads
learn to focus on different feature granularities (axis ticks indicate
pyramid level of corresponding relay tokens).
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H-OSA attention maps (before softmax) - level 1

Figure 11. Local attention matrices from different attention win-
dows within H-OSA blocks (averaged over attention heads) for a
submap from Oxford. The relay token is represented by the top-left
element of each map.

(a) Submap

Pyramid level 1 (depth 6) Pyramid level 2 (depth 5) Pyramid level 3 (depth 4)

1400505893170765.bin - coords (5735438.70, 620661.11) - cartesian coords

(b) Cartesian attention windows

Pyramid level 1 (depth 6) Pyramid level 2 (depth 5) Pyramid level 3 (depth 4)

1400505893170765.bin - coords (5735438.70, 620661.11) - cylindrical coords

(c) Cylindrical attention windows

Figure 12. Comparison of Cartesian vs. cylindrical octree attention windows on submaps from Oxford Robotcar [33], where nearby points
are colourised by which local attention window they belong to. The uniform nature of aggregated 2D lidar scans and highly-structured
scene geometry make Cartesian attention windows a better representation for Oxford.



(a) Submap (b) Cartesian attention windows

(c) Cylindrical attention windows

Figure 13. Comparison of Cartesian vs. cylindrical octree attention windows on submaps from Wild-Places [26]. The variable density of
spinning lidar is better captured by cylindrical attention windows in coarser levels, and tree trunks are better represented. We highlight a
region where the effect is most noticeable.


