
BlenderGym: Benchmarking Foundational Model Systems for Graphics Editing

Supplementary Material

Appendix Overview
In Appendix S1, we extend the verifier scaling experiments to broader tasks. In Appendix S2, we analyze generator failure
examples. In Appendix S3, we show a verifier’s decision process for a task instance and offer a cross-model verification
comparison on the same set of instances. In Appendix S4, we provide a calibrated interpretation of evaluation metrics and
analyze their limitations. In Appendix S5, we show the reasoning behind the camera-view selection. Finally, in Appendix S6,
we provide all the prompts used by the generator and verifier.

S1. Verifier Scaling
To consolidate our findings on strategic compute allocation between verification and generation, we (1) plot the N-CLIP
score and Chamfer distance for blend shape (Fig. 7) and (2) extend our experiments to 15 lighting task instances (Fig. 8).

Our results demonstrate that with increased compute, VLM systems with higher verification ratio consistently outperform
those with lower verification ratio. However, the size of this performance gap varies across tasks. As shown in Fig. 7 and
Fig. 8, the performance gap between higher and lower verification ratios is smaller for lighting than for blend shape tasks.
Our interpretation is that this gap is positively related to the difficulty of verification for the task –Lighting involves assessing
more prominent factors like light intensity and color and, therefore, is easier for verification. In contrast, the blend shape
manipulation task requires detecting more subtle and continuous changes, posing a significantly greater challenge.

We directly use the summation of the generation and verification queries as total queries since they incur a similar cost.

Figure 7. Impact of compute allocation in all three metrics on blend shape manipulation task.

Figure 8. Impact of compute allocation in both PL and N-CLIP metrics on lighting adjustment task.

S2. Generator Failure Cases
Despite their capabilities, VLM generators exhibit the following common failures, as shown in Fig. 9, Fig. 10, and Fig. 11:
Failure to capture subtle visual differences. This issue arises mainly because the VLM generator often hallucinates non-
existent visual differences between images rather than identifying actual discrepancies. This is a well-known limitation of
VLMs and remains challenging to address. To mitigate this, we employ chain-of-thought (CoT) prompting, instructing the
VLM to begin by analyzing visual differences and ignoring the code script. Details on our CoT implementation can be found
in Appendix S6. However, the generator still occasionally disregards the CoT prompt, prematurely suggesting code changes
instead of reasoning step-by-step, disrupting the intended stable reasoning process.
Failure to produce executable Blender Python scripts. Tasks like procedural material and geometry editing present
significant challenges in generating executable code that reflects intended changes. These failures often stem from syntax
errors, incompatibility with the Blender-Python API, or the inability to effectively incorporate the visual differences identified
by the VLM, ultimately resulting in incorrect modifications.

S3. Verifier Failure Cases
We provide a complete verification process of a 3x4 tree generated by GPT4o, shown in Fig. 12, to contextualize the veri-
fication process. We also offer cross-model verifier comparisons on identical task instances in Fig. 13 and Fig. 14. Despite
the prompt guidance in Fig. 21, only Claude 3.5 Sonnet consistently produces a complete reasoning process for its decisions,
potentially enhancing its verification capability and contributing to its status as the most human-aligned VLM verifier.

S4. Calibration of Evaluation Metrics
We calibrate photometric loss (PL), negative-CLIP (N-CLIP), and Chamfer distance (CD) using the examples in Fig. 15 and
Fig 3 of the main paper. PL and N-CLIP values are on the scale of 10−3 for blend shape and placement tasks and 10−2 for
geometry, material, and lighting tasks. CD stays at its original scale. We notice that small metric differences can correspond
to significant visual changes in the scene.

While these metrics generally align with human perception, they have two key limitations:
Failure in capturing physical plausibility For instance, Qwen2VL-7B leaves the soccer ball unnaturally stuck on the
basket, violating physical laws and common sense. In contrast, MiniCPM-V2.6 places the ball outside the basket. MiniCPM-
V2.6’s edit, despite being suboptimal, adheres to physical laws and should be considered superior to Qwen’s edit, a distinction
not captured by the metric scores.
Task-dependent disproportionate scale. Lighting and procedural material tasks, due to their large-scale color changes,
have higher values for N-CLIP and PL compared to blend shape and placement tasks. Procedural geometry editing also
yields larger metric values since the object-of-interest often dominates the scene, making small changes more impactful.
Conversely, placement and blend shape tasks typically involve object or feature adjustments of a smaller scale, leaving a
significant proportion of the scene unchanged, leading to comparatively smaller metric values. Despite allowing cross-model
comparison on a specific task, the disproportionate scales of metrics hinder direct cross-task comparison of a specific VLM
system.

S5. Camera Viewpoint Selection
We define VLM-input and evaluation-only as two sets of views, with the former propagated to the VLM system and the latter
reserved exclusively for evaluation. Both sets contribute to the evaluation metrics. A comprehensive view (defined below) is
first selected and assigned to the VLM input set. Additional views capturing key object details are chosen, with one added
to the VLM-input set and the remaining designated as evaluation-only. Importantly, all objects-of-interest are guaranteed to
appear in at least one VLM-input view, ensuring the system has access to all critical visual information. Examples of this
process are illustrated in Fig. 16 and Fig. 17.

We define a comprehensive view as a camera angle that provides a high-level perspective, typically from an elevated
angle, encompassing most objects in the scene. It must clearly convey spatial relationships and object locations, particularly
for objects-of-interest. While challenging to formalize in words, comprehensiveness is visually exemplified in Fig. 16 and
Fig. 17, where the images in the first column are all comprehensive views.

• Ball Size decreased
• Cupboard closed
• Painting Size Increased

Start Scene

Goal Scene

The most visually obvious difference is the size of the TV.

Before:

 key_blocks['TV Size'].value = 1.0

After:

 key_blocks['TV Size'].value = 0.2

GPT4o

Fails to capture visual difference
(VLM misidentifies TV size change)

The biggest difference is the the size and position of the plant object.

Before:

 key_blocks['Plant Height'].value = 0.3

After:

 key_blocks['Plant Height'].value = 0.6

Claude 3 Haiku

The difference is most likely due to the values assigned to the "value" field of key_blocks.

Before:

 key_blocks[\'Chair Area\'].value = 0.4

After:

 key_blocks[\'Cushion Area\'].value = 0.6

Qwen2-VL-7B-Instruct

The most visually obvious difference between the two renderings is the size of the ball.

Before:

 key_blocks['Ball Size'].value = 1.0

After:

 key_blocks['Ball Size'].value = ```

Phi-3.5-vision-instruct

• Leg length increased

Start Scene

Goal Scene

The most visually obvious difference is that the stem (base) of the glass.

Before:

 key_blocks['Leg Shortness'].value = 1

After

key_blocks['Leg Shortness'].value = -1

GPT4-Turbo

Fails to follow the prompt
(The VLM doesn’t set all blend shape values

to [0, 1], which is required by the prompt)

The most visually obvious difference is the shape of the bowl, particularly the width.

Before:

 key_blocks['Bowl Mouth Narrow'].value = 0.168

After

 key_blocks['Bowl Mouth Narrow'].value = -0.4

Fails to capture visual difference
(VLM misidentifies bowl width change)

The most visually obvious difference is the change in the bowl's dimensions and proportions.

Before:

 key_blocks['Bowl Middle Width'].value = 0.5

After:

 key_blocks['Bowl Base Width'].value = -1.2

MiniCPM-V2.6

Fails to capture visual difference
(VLM misidentifies bowl dimension change)

The key difference is that the bowl is more narrow in the right[goal] rendering.

Before:

 key_blocks['TV Size'].value = 2.2

After:

 key_blocks['TV Size'].value = 0.2

GPT4o

Fails to capture visual difference
(VLM misidentifies bowl width change)

Fails to capture visual difference
(VLM misidentifies plant size change)

Fails to follow the prompt
(VLM does not state any visual difference)

Fails to generate executable script
(VLM does not assign value to a variable)

Claude 3 Haiku

Figure 9. Examples of generator failure for blend shape manipulation. We present the most visually obvious difference observed by the
VLM, the code change proposed, and a failure analysis.

• Top light color changed from
white to blue

Start Scene

Goal Scene

The most visually obvious difference is the color of the light above.

Before:

 top_light.data.energy = 400

After:

 top_light.data.energy = 0

GPT4o

Fails to make correct edit
(VLM changes energy, not color)

The most visually obvious difference is the that the light is blue in the right[goal] image.

Before:

 side_light_1.data.color = (1, 1, 1)

After:

 side_light_1.data.color = (0.25, 0.30, 1)

Claude 3 Haiku

Before:

 top_light.data.energy = 400

After:

 top_light.data.energy = 100

Phi-3.5-vision-instruct

The most visually obvious difference is the color of the top light. It is blue in the right[goal] image.

Before:

 top_light.data.color = (1.0, 1.0, 1.0)

After:

 top_light.data.color = (0.5, 0.5, 1.0)

MiniCPM-V2.6

• Density of surface bump
decreased

Start Scene

Goal Scene

The biggest visual difference is that glowing elements in the goal are connected by lines.

Before:

 extrude_mesh_1 = nw.new_node(Nodes.ExtrudeMesh,input_kwargs={

 'Mesh': extrude_mesh.outputs["Mesh"],

 'Selection': extrude_mesh.outputs["Side"],

 'Scale': 0.0300, 'Individual': False})

After:

 extrude_mesh_1 = nw.new_node(Nodes.ExtrudeMesh,input_kwargs={

 'Mesh': extrude_mesh.outputs["Mesh"],

 'Selection': extrude_mesh.outputs["Side"],

 'Scale': 0.0300, 'Individual': False})

Gemini-1.5-Flash

The most obvious visual difference is the extruded triangular faces are much larger and more pronounced

in the desired model on the right[goal].

Before:

emission = nw.new_node(Nodes.Emission,

 input_kwargs={

 'Color': color_ramp.outputs["Color"],

 'Strength’: 10.000})

After:

emission = nw.new_node(Nodes.Emission,

 input_kwargs={

 'Color’: color_ramp.outputs["Color"],

 'Strength': 20.0000})

Fails to make correct edit
(VLM changes emission, which is unrelated)

Fails to make correct edit
(VLM changes side light, not top light)

Fails to follow the prompt
(VLM does not state visual difference)

Fails to make correct edit
(VLM sets RGB to incorrect value)

Claude 3.5 Sonnet

Fails to make correct edit
(VLM does not change anything)

Fails to make the correct edit
(VLM changes energy, not color)

Figure 10. Examples of generator failure for lighting and procedural geometry. We present the most visually obvious difference observed
by the VLM, the code change proposed, and a failure analysis.

• Double line changed from
white to yellow

Start Scene

Goal Scene

The most obvious difference is the color of the lane markings - they are yellow in the goal image

instead of gray.

Before:

('NodeSocketColor', 'Lane Color', (0.5000, 0.5000, 0.5000, 1.0000)),

After

 ('NodeSocketColor', 'Lane Color', (0.9, 0.8, 0.0, 1.0000))

Claude 3.5 Sonnet

Fails to generate executable script
(VLM hallucinates non-existent before code)

A new-line separated bulletpoint list that follows the following format: The most visually obvious

difference between the two materials is the color of the lanes.

Before:

 group_input = nw.new_node(Nodes.GroupInput,\n expose_input=[('NodeSocketFloat’, 'Scale',

150.0000), ('NodeSocketFloatFactor', '1 Or 2 Lanes Fac’,\n 1.0000), ('NodeSocketFloat', 'Lane

Thickness', 0.0700)])

After:

 group_input = nw.new_node(Nodes.GroupInput,\n expose_input=[('NodeSocketFloat’, 'Scale',

150.0000), ('NodeSocketFloatFactor', '1 Or 2 Lanes Fac’, \n 0.5000), ('NodeSocketFloat', 'Lane

Thickness', 0.0700)])"}

MiniCPM-V2.6

• Surface color and contrast
changed

• Bumpiness reduced

Start Scene

Goal Scene

The most visible difference is that the left[start] material appears darker with more contrast whereas

the right[goal] material is lighter with less contrast.

To adjust the contrast and colors for a more visible difference, you would want to focus on the

parameters that control these aspects. For the purposes of the transformation, you can change the

positions and colors of the `ColorRamp` nodes as well as some parameters in the `PrincipledBSDF`

shader.\n\n### Changes for Contrasts and Color Correction.

GPT4-Turbo

Change the element colors in the first `ColorRamp` node to match the lighter color in the goal image.

Before:

 color_ramp.color_ramp.elements[0].color = [0.0000, 0.0000, 0.0000, 1.0000]

 color_ramp_1.color_ramp.elements[0].color = [0.0000, 0.0000, 0.0000, 1.0000]

After:

 color_ramp.color_ramp.elements[0].color = [1.0000, 1.0000, 1.0000,]

 color_ramp_1.color_ramp.elements[0].color = [0.8, 0.8, 0.8, 1.0000]

Fails to generate executable script
(VLM includes \n in the code script)

GPT-4o

Fails to generate executable script
(VLM does not yield any code output)

Fails to generate executable script
(VLM misses alpha channel for RGBA)

Figure 11. Examples of generator failure for procedural material editing. We present the most visually obvious difference observed by the
VLM, the code change proposed, and a failure analysis.

Start

GoalFinal Edit

Edit Iteration 1

Edit Iteration 2

Edit Iteration 3

Figure 12. A complete verification process of a 3x4 tree generated by GPT4o on one task instance. We observe that a more human-aligned
candidate is generated in edit iteration 2 but is not selected by the verifier.

Goal Scene Candidate 1 Candidate 2

C
la

u
d

e
 3

.5
 S

o
n

n
e

t Reason: The target rendering

shows a slightly downturned

mouth, indicating a sad or

concerned expression.

Candidate 2 matches this

expression.

Answer: Candidate 2

Choice

G
P

T4
o

Reason: Candidate 1 is closer

to the goal, as both lack the

added expressive details

found in candidate 2 (e.g., the

smile).

Answer: Candidate 1

In
te

rn
V

L2
-8

B

Reason: N/A

Answer: Candidate 1

Q
w

e
n

2
-V

L-
7

B

Reason: N/A

Answer: Candidate 2

Figure 13. Examples of verifier decisions for a blend shape instance. N/A indicates that no reasoning is provided by the verifier. The
candidates differ across models since they are rendered from edits generated by the model itself.

Goal Scene Candidate 1 Candidate 2

C
la

u
d

e
 3

.5
 S

o
n

n
e

t

Reason: The relative position

of table candidate 1 is more

aligned with the goal.

Answer: Candidate 1

Choice

G
P

T4
o Reason: N/A

Answer: Candidate 1

In
te

rn
V

L2
-8

B

Reason: N/A

Answer: Candidate 2

Q
w

e
n

2
-V

L-
7

B

Reason: N/A

Answer: Candidate 1

Figure 14. Examples of verifier decisions for an object placement instance. N/A indicates that no reasoning is provided by the verifier. The
candidates differ across models since they are rendered from edits generated by the model itself.

Placement

Start

Goal: Move the ball to the center of basket

Goal Human Claude 3.5 Sonnet GPT4o MiniCPM-V2.6 Qwen2VL-7B:

PL: 1.35

CD: 1.243

PL: 2.55

CD: 2.987

PL: 6.14

CD: 4.435

PL: 10.97

CD: 7.432

PL: 8.37

CD: 6.123

Lighting

Start

Goal: Change the lighting color to soft pink

Goal Human Claude 3 Haiku GPT4-Turbo InternVL2-8B Qwen2VL-7B:

PL: 2.543

N-CLIP: 1.722

PL: 4.864

N-CLIP: 2.897

PL: 5.721

N-CLIP: 2.145

PL: 8.486

N-CLIP: 3.157

PL: 10.3

N-CLIP: 4.078

Material

Start

Goal: Change material from black stone to
white snow

Goal Human Claude 3.5 Sonnet GPT4o Gemini 1.5 Flash MiniCPM-Llama

PL: 1.763

N-CLIP: 2.874

PL: 2.878

N-CLIP: 3.243

PL: 3.883

N-CLIP: 4.878

PL: 4.876

N-CLIP: 6.192

PL: 5.978

N-CLIP: 9.876

Geometry

Start

Goal: Increase subdivision of the surface

Goal Human Claude 3 Haiku Gemini 1.5 Flash MiniCPM-Llama InternVL-Llama

PL: 1.483

CD: 0.397

PL: 1.897

CD: 0.674

PL: 2.875

CD: 0.976

PL: 2.763

CD: 0.927

PL: 3.874

CD: 1.276

Figure 15. Calibration of metric values with render images of VLM system output edits. We present start scene, goal scene, human user
edit, and VLM system edits side by side with their corresponding metric values.

Evaluation-only ViewsVLM-input Views

Figure 16. Examples of VLM-input views and evaluation-only views. Images on the first column are all rendered from comprehensive
views.

Evaluation-only ViewsVLM-input Views

Figure 17. Examples of VLM-input views and evaluation-only views. Images on the first column are all rendered from comprehensive
views.

S6. Prompts for VLM System
In our generator-verifier VLM system implementation, three VLM agents are involved: generator, code editor, and verifier.
Here we include the prompt template we use for the three agents.

S6.1. Brainstormer

Brainstormer compares the start and goal render images, interprets the Python script of the start scene, and generates instruc-
tions for the required modifications on the script. It operates alternatively in two distinct modes: tune and leap, following
from BlenderAlchemy. The tune mode adjusts parameter values within the existing code, while the leap mode proposes
structural changes to the code, such as introducing new nodes for procedural editing. We set the return format to be a
start-separated list of at most five instruction pieces. The prompt for both modes is given in Fig. 18 and Fig. 19.

S6.2. Code Editor

The code editor iterates through the brainstormer’s output list of instruction pieces and integrates each of them into the code
script of start scene. It generates a list of Python code differences, each including “CodeBefore,” the original code segment
from the input script, and “CodeAfter,” the corresponding proposed modification to be applied. We use some helper function
subsequently substitute CodeBefore with CodeAfter.

S6.3. Verifier

The verifier concatenates the render images of two proposal edits horizontally, compares them with the goal render, and
selects one that is more similar to the goal edit. It returns a ‘left” or “right” choice over the concatenated image, indicating
the choice among the two candidates.

The following Blender code was used to produce a procedural 3D model:

```[Python script of the START scene] ```

The final code creates a procedural 3D model and produces the rendering on the left below(The image is concatenated
by camera renders from different angles):

The desired procedural 3D model is shown in the image on the right(The image is concatenated by camera renders
from different angles). Please describe the difference between the two 3D models, and edit the code above to reflect
this desired change.

[A concatenated image of START(on the left) and GOAL(on the right)]

Describe, in a bullet-point list (using * as the bullet points), the biggest visual difference, which lines you would
change (quote them in python code blocks) and how you would change them. Every item of the list should reference
only ONE or A FEW lines of code and how it should be changed. Make AT MOST 5 such changes, no more than 5.
Return in the format below:

raw: A new-line separated bullet point list that follows the following format:

Example:
* first item
* second item
...etc

Figure 18. Prompt for brainstormer in leap mode. This prompt is for procedural geometry editing task, but the ones for other tasks follow
a similar structure with a few words changed.



The following Blender code was used to produce a procedural 3D model:

```[Python script of the START scene] ```

This creates a procedural 3D model and produces the rendering on the left below (the image is concatenated by
camera renders from different angles):

The desired 3D model is shown in the image on the right (the image is concatenated by camera renders from different
angles).

[A concatenated image of START(on the left) and GOAL(on the right)]

Answer the following questions:
1) What is the SINGLE most visually obvious difference between the two models in the two renderings in the image
above (both images are concatenated by camera renders from different angles)?
2) Look at the code. Which fields/variables which are set to numerical values are most likely responsible for the
obvious visual difference in your answer to question 1?
3) Replace the assignments of such fields/variables accordingly!

Describe, in a bullet-point list (using * as the bullet points), the biggest visual difference, which lines you would
change (quote them in python code blocks) and how you would change them. Every item of the list should reference
only ONE or A FEW lines of code and how it should be changed. Make AT MOST 5 such changes, no more than 5.
Return in the format below:

gpt raw: A new-line separated bulletpoint list that follows the following format:

Example:
* first item
* second item
...etc

Figure 19. Prompt for brainstormer in tune mode. This prompt is for procedural geometry editing task, but the ones for other tasks follow
a similar structure with a few words changed.

Consider the following code of a procedural 3D model in Blender:

```[Python script of the START scene] ```

You’d like to do the following:

[Instruction piece from brainstormer]

Convert this into a concrete code difference indicated by “Before:” and “After:” labels, followed by code blocks that
indicate which line should be changed and to what. Do not copy-paste the whole original code.

Example:

Before:
```
python
a = 1
```
After:
```
python
a = 2
```

Figure 20. Prompt for code editor. It receives instruction from brainstormer and incorporates it to the code script of start scene.

Here is the goal model rendering (the image is concatenated by camera renders from different angles):

[goal model image]

Below, I show two different models (the images are concatenated by camera renders from different angles). Which
one is visually more similar to the goal model rendering?

[A concatenated image of Candidate 1 (on the left) and Candidate 2 (on the right)]

Return your answer in the following format:

raw: A block of text that contains a single word in a text block, indicated by ```. The word should be either “right”
or “left”. Example:

You’ve asks me to choose the image (left or right) that best aligns with the goal render.
Though the sample on the left is more realistic, the sample on the right is better aligned with the goal render.
```
right
```

Figure 21. Prompt for verifier.


	. Verifier Scaling
	. Generator Failure Cases
	. Verifier Failure Cases
	. Calibration of Evaluation Metrics
	. Camera Viewpoint Selection
	. Prompts for VLM System
	. Brainstormer
	. Code Editor
	. Verifier


