MAtCha Gaussians: Atlas of Charts for High-Quality Geometry and
Photorealism From Sparse Views

Appendix

In this appendix, we describe
* additional implementation details,
¢ details about our mesh extraction method,
* and additional qualitative results.
We also provide a video that offers an overview of the ap-
proach and showcases additional qualitative results.

1. Implementation Details
1.1. Initializing Charts

For initializing the charts using a monocular depth estima-
tion model, we not only backproject the depth maps into
3D but also roughly adjust the scale of the depth estimates
using a global affine rescaling model [8, 10]. Note that we
can compute an explicit closed-form solution for this affine
rescaling which executes in less than a second.

In our experiments, the size of our charts is proportional
to the input views, and the longest sides of the charts have
length max(h, w) = 512. We rely on MASt3R-SfM [4] to
obtain an SfM point cloud for aligning the charts.

1.2. Chart Deformation Model

We can adjust the resolution of the learnable charts encod-
ings (i.e., r) according to the density of the SfM points
or the number of views. The sparser the SfM point cloud
or the training images, the lower the resolution of the
charts encodings. In other words, we can explicitly adjust
the strength of the inductive bias in our chart deformation
model according to the different scenarios. For small scenes
with only 3 input views like the objects from the DTU [1]
dataset, we use a small resolution parameter » = 0.1 for
the charts encodings. In larger and unbounded scenes with
5 or 10 input views, we use a larger resolution parameter
r = 0.4 for our charts encodings.

The other hyperparameters are constants and indepen-
dent of the inputs. In practice, we set d = 32 and use an
MLP with only 1 hidden layer. The number of channels in
the hidden layer is 64. For aligning our charts with the ini-
tial SfM points, we optimize our model for 1000 iterations.
For refining the charts, we optimize our model for 3000 it-
erations.

During the alignment with the SfM points, we deform
the charts along the camera rays, as we empirically found
it to be more robust. Moreover, deforming the charts along
the camera rays enables very efficient computation of the
mutual alignment loss, as in this case, the 3D to 2D mapping
of our charts is equivalent to the camera screen projection

transform. To deform charts along the rays, we use a one-
dimensional output layer for the MLP, and we compute the
3D deformation by multiplying the MLP output by the ray
direction.

During the refinement with Gaussian surfel rendering,
we first update the initial charts %(0) and replace them with
the deformed charts 1;; Then, we reinitialize the weights of
the MLP and replace the output layer with a 3-dimensional
layer in order to learn a full 3D deformation for the charts.

1.3. Refining the Manifold with Gaussian Surfels

During the second optimization stage, we rely on a photo-
metric loss to refine the manifold. At each iteration, we ren-
der the manifold by first instantiating 2D Gaussian surfels
on the surface, then rasterizing the Gaussians with a surfel
rasterizer [0].

Photometric loss The photometric loss consists of an L1
loss £1 and a D-SSIM term Lp_ssim:
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where we set A = 0.2, following past 3DGS works [7].

Structure loss To preserve the fine geometry of our
aligned charts, we maintain the structure loss but replace
the depth estimates with the depth of our aligned charts. We
also weight the structure loss using our confidence maps C;;
estimated during the manifold alignment to the SfM points,
which makes it a scale-accurate depth regularization robust
to outliers.

To further regularize the geometry, we also use a depth-
normal consistency loss and a depth distortion loss, as in-
troduced in 2DGS [6].

Distortion loss The distortion loss prevents Gaussians
from spreading around the surface. Since we instantiate
Gaussian surfels on the manifold represented as a collec-
tion of charts, the distortion term enforces the surfaces of
the different charts to align together and form a coherent
manifold. For each pixel p, the distortion loss is given by
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where 7 and j represent the i-th and j-th Gaussian surfels
intersected along the ray, z; is the depth of the intersection
point between the ray and the ¢-th Gaussian surfel, and w;
is the blending weight of the i-th intersection.


https://anttwo.github.io/matcha/

Depth-Normal consistency loss The depth-normal con-
sistency loss aims to align the normals of the closest Gaus-
sian surfels along the ray with the gradient of the depth map.
In our case, this term encourages the surfaces of the differ-
ent charts to have the same orientation. For a pixel p, the
normal consistency loss at p is given by

Ly =) wi(l-n/N,), 3)

where n; is the normal of the i-th Gaussian surfel along
the ray and N, is the normal at pixel p computed from the
gradient of the depth map.

Optimization loss The complete loss for refining the
charts is
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where we set Aguee = 1, A\g = 500, and \,, = 0.25. We
refine the representation for 3000 iterations, and introduce
L4 and £, only after 600 iterations.

1.4. Extracting a Surface Mesh from the Manifold

We propose two different approaches for extracting a sur-
face mesh from our manifold representation, depending on
the scene complexity and the desired level of detail.

Direct Mesh Extraction For scenes with moderate com-
plexity or extreme sparse-view setups (e.g., 3 views on
DTU), we can directly extract a surface mesh from our
manifold using a custom multi-resolution TSDF fusion ap-
proach, or a custom implementation of the adaptive tetra-
hedralization from Gaussian Opacity Fields [11]. Since we
describe our tetrahedralization in the main paper, we focus
on providing additional details about the multi-resolution
TSDF below.

We render depth maps from our manifold and fuse them
into several TSDF volumes with different resolutions. The
lower the resolution, the larger the bounding box used for
applying the TSDF algorithm. Then, we merge the TSDF
volumes and remove the overlapping regions. Note that,
in a sparse-view scenario, the number of depth maps is very
low, so that integrating depth maps for computing the TSDF
volumes is very fast and takes less than a minute.

Our multi-resolution approach allows us to accurately
reconstruct both foreground objects and background re-
gions with a decent number of vertices, which is crucial
for unbounded scenes. However, even though our multi-
resolution TSDF is very fast, it generally erodes the geome-
try and creates holes in the extracted surface. In this regard,
we recommend using the tetrahedralization for extracting
meshes.

Free Gaussians Refinement For scenes requiring finer
geometric details, particularly in large unbounded environ-
ments, we propose an additional refinement step that lever-
ages our manifold as a strong geometric prior. Instead of
directly extracting the mesh, we first let Gaussian surfels
get freely optimized in 3D space for a few iterations while
strongly constraining them with our manifold representa-
tion.

For this, we freeze the manifold but unfreeze the Gaus-
sians’ parameters (position, scale, and rotation) and regu-
larize them using depth maps rendered from the manifold
through a combination of our refinement loss and an L1
depth loss with a weighting factor Agepp, = 0.75. We also
use our confidence maps to weigh the depth regularization,
but not the structure loss that relies on the derivatives of the
depth. Indeed, applying the structure loss everywhere in
the scene enables regularization of Gaussians located even
in low-confidence areas, where normal maps and curvature
maps still provide a reliable supervision signal despite of
inaccurate depth values.

This refinement step is particularly effective because
our manifold provides scale-accurate regularization, unlike
traditional depth-based regularization methods that often
struggle with scale ambiguity. The manifold acts as a reli-
able geometric prior that prevents Gaussians from diverging
while letting them recover fine surface details that might not
be fully captured by the manifold representation alone.

After this Gaussian refinement stage, we extract the final
mesh using the same multi-resolution TSDF fusion or tetra-
hedralization approaches described above, but now applied
to the refined Free Gaussians representation. This two-stage
approach allows us to recover very fine geometric details
while maintaining the overall accuracy and robustness of
our manifold representation.

2. Additional Results and Details

Surface Reconstruction Fig. 1 shows qualitative re-
sults. Our method can reconstruct high-quality surfaces
across different scenarios, from bounded objects (DTU [1]
dataset) to unbounded scenes (Tanks&Temples [9] and
Mip-NeRF 360 [2] datasets), using varying numbers of, but
sparse, input views (3, 5, and 10 views). For each example,
we show a rendered view, the estimated depth map, surface
normals, and the extracted mesh, which collectively show
the consistency of our reconstruction across different rep-
resentations. For the objects from the DTU dataset, we di-
rectly extract the mesh from the manifold representation us-
ing our multi-resolution TSDF fusion approach. For the un-
bounded scenes from the T&T and Mip-NeRF 360 datasets,
we first refined free Gaussians around the manifold as ex-
plained in the previous section, then extracted the mesh us-
ing the same multi-resolution TSDF fusion approach.

In the 3-view scenarios (first two rows), our method suc-
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Figure 1. Qualitative reconstruction results across different scenarios and numbers of input views. We show results on both bounded
objects from DTU [1] (first two rows, 3 views) and unbounded scenes from Tanks&Temples [9] and Mip-NeRF 360 [2] (middle and bottom
rows). For each example, we show (from left to right): the rendered novel view, estimated depth map, surface normals, and the extracted
mesh. For bounded objects (DTU), meshes are extracted directly from our manifold representation, while for unbounded scenes, we first
refine free Gaussians around the manifold before mesh extraction. Note how our method maintains consistent quality across different
scenarios, from small objects to large-scale scenes with complex backgrounds.



Mip-NeRF 360 [2]

Tanks&Temples [9] DeepBlending [5]

10%QPSNR 1 Avg PSNR 1

10%QPSNR +  Avg PSNR

10%QPSNR 1 Avg PSNR 1

5 training views

2DGS [6]+MASt3R-StM [4] 15.37 20.84 14.23 16.42 15.84 19.86

GOF [11]+MASt3R-StM [4] 15.78 21.24 13.69 16.50 15.58 19.87

MAtCha (Ours) 18.18 21.90 15.33 17.30 17.22 20.60
10 training views

2DGS [6]+MASt3R-StM [4] 19.94 24.31 16.63 19.59 14.06 21.14

GOF [11][+MASt3R-SfM [4] 20.99 24.50 16.81 19.59 12.61 21.12

MAtCha (Ours) 21.55 25.10 17.96 20.38 17.41 22.98

Table 1. Quantitative evaluation of Novel View Synthesis in sparse-view scenarios across multiple real-world datasets. We evaluate
our method against baselines on three challenging datasets: Mip-NeRF 360 [2], Tanks&Temples [9], and DeepBlending [5]. Baselines
consist of recent state-of-the-art approaches augmented with MASt3R-SfM [4] for more robustness to sparse-view scenarios. For each
dataset and method, we report both the average PSNR and the 10% quantile PSNR (10%Q PSNR) which better reflects performance on
challenging views and better capture the ability of a method to generalize to novel viewpoints. Results are shown for both 5-view and
10-view scenarios, demonstrating our method’s superior performance across different sparsity levels.

MVSplat360 [3] Ours

Figure 2. Qualitative comparisons of novel view synthesis with
MVSplat360 [3] on an unbounded scene with 5 training im-
ages. Our method can render more photorealistic images than the
concurrent feed-forward novel view synthesis method in sparse
view scenarios.

cessfully recovers detailed geometry despite the extreme
sparsity of input views. The 5-view and 10-view exam-
ples (middle and bottom rows) demonstrate how our ap-
proach scales to larger unbounded scenes while maintain-
ing reconstruction quality throughout the scene, including
distant background regions.

Novel View Synthesis Tab. 1 of the main paper pro-
vides results of novel view synthesis in sparse-view settings
across three challenging real-world datasets of unbounded
scenes: Mip-NeRF 360 [2], Tanks& Temples [9], and Deep-
Blending [5]. Specifically, we follow 3DGS [7] and use
the scenes Playroom and Dr. Johnson for evaluation on the
DeepBlending dataset. For the T&T dataset, we use the
standard split of 6 scenes as used in 2DGS [6] and GOF [11]
but removed Courthouse and Meetingroom, as these very
large scenes are not suitable for sparse-view scenarios with
only 5 or 10 input views.

We consider two scenarios with 5 and 10 training views,
respectively. For each dataset, we built training sets of 5 and

10 input views and evaluated on a set of 10 test views, in-
cluding both easy views with high overlap with the training
views and much more challenging views with very limited
overlap. For fair comparison, we augment recent state-of-
the-art methods (2DGS [6] and GOF [11]) with MASt3R-
StM [4], as it provides better robustness in sparse-view sce-
narios.

We report both average PSNR and 10% quantile PSNR
(10%Q PSNR) metrics. The 10%Q PSNR is the PSNR
value below which 10% of the test views fall. Average
PSNR provides an overall measure of reconstruction qual-
ity. In contrast, the 10%Q PSNR specifically captures ac-
curacy on the most challenging views as well as the ability
of a method to generalize to novel viewpoints. This metric
is particularly relevant to sparse-view settings where some
novel viewpoints may have very limited overlap with input
views.

As shown in Tab. 1, our method consistently outper-
forms the baselines across all datasets and metrics. In the
5-view scenario, we achieve significant improvements over
the baselines. The performance gap remains substantial
even when increasing to 10 input views, where our method
maintains superior reconstruction quality across datasets.
This consistent performance advantage demonstrates the ef-
fectiveness of our chart-based representation and refinement
approach in handling sparse-view scenarios.

Notably, our method shows particular strength in main-
taining quality for challenging views, as evident in the
larger improvements in 10%Q PSNR compared to average
PSNR. This suggests that our chart-based representation,
combined with the robust deformation model and multi-
stage refinement process, helps maintain consistency even
in regions with limited overlap in views.



We also qualitatively compare our method with MVS-
plat360 [3], a concurrent method for feed-forward novel
view synthesis in sparse-view settings. Fig. 2 shows ren-
dering results of MVSplat360 and our method from novel
viewpoints by using 5 views. MVSplat360 suffers from a
domain gap from training data and limited image resolution
due to training of its feed-forward networks, leading to un-
realistic rendering results.
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