
A Bias-Free Training Paradigm for More General AI-generated Image Detection

Supplementary Material

In this supplementary document, we report more details
about our implementation (Sec. 8). Moreover, we briefly
describe the state of the art methods we compare to (Sec. 9),
and give more details about the calibration metrics used in
the experiments (Sec. 10). We also provide additional ab-
lation results in Sec. 11 and carry out further experiments
on generalization (Sec. 12) on additional publicly available
datasets. Furthermore, we provide more results on the ro-
bustness of our approach compared with SoTA methods
(Sec. 13).

8. Implementation Details

Training strategy. The proposed model leverages the DI-
NOv2+reg [7, 15] 504 × 504 image embedding network
as its backbone, followed by a fully connected layer. The
model is trained end-to-end using the binary cross-entropy
loss function on an NVIDIA A100 GPU. The training pro-
cess employs the ADAM optimizer with a learning rate of
1e-6, a weight decay of 1e-6, and a batch size of 24. During
training, the balanced accuracy is evaluated on a validation
set every 3435 iterations. Early stopping is applied to pre-
vent overfitting: training is completed if the validation bal-
anced accuracy does not improve by at least 0.1% over five
consecutive evaluations.

Test strategy. If the test image is less than 504 pixels,
padding is applied after patch embedding. Otherwise, we
average the logit score over multiple crops to analyze the
whole image.

Training Dataset. Here we give more deatils on how we
built our dataset. Starting from the MS-COCO training set,
consisting of 118K images with 80 categories of objects,
we first discarded images with licenses different than Cre-
ative Commons. Before editing the images, we extracted
the largest central crop, which allows us to retain most of
the semantic content of the original image. We discarded
images where objects are not present and ended up with a
pristine source of 51,517 images. For content augmenta-
tion, we replaced the selected object with an object gen-
erated from the same category using the COCO segmenta-
tion mask, and from a different category using a rectangular
box. We took care to not affect too much the realism of
the content, so for the “different category” case the object
is changed with one from a similar category, that belongs
to the same COCO supercategory. In this scenario, the only
exception is the category person, which does not have a su-
percategory and it is therefore replaced with a random ob-
ject. As mentioned in the main paper, besides the default
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Figure 9. Examples of content augmented images from our train-
ing dataset. From real images (first row), we generate inpainted
versions with the same content (second row) and different content
(third row).

inpainting, we also consider a version where we take the
pixels of the object from the generated image, and the pixels
of the background from the original one. We did the same
with the self-conditioned image, restoring the background
with original pixels. Therefore, we ended up with six fake
versions for each real image (Fig. 4 of the main paper).

9. SoTA Methods

Below we provide a brief description of the methods we
included in the comparison in Section 5 of our main paper.
The training datasets used by these methods are indicated in
Table 6 of the main paper.

CNNDetect [20]. This is a CNN-based detector built on
ResNet50 (pre-trained on ImageNet) that adpots augmenta-
tion in the form of post-processing operations, such as blur-
ring and compression.

DMID [6]. This work also relies on a ResNet-50, but it
prevents down-sampling at the first layer so as to preserve
the invisible forensics clues as much as possible, and uses a
stronger augmentation to increase robustness.

LGrad [17]. This work is also based on a ResNet-50 clas-
sifier, but this is fed by a generalized artifacts representation
of the image in the form of gradients. This representation is
designed to more effectively capture the artifacts introduced
by synthetic generators.



Synthbuster New Generators WildRF AVG

Training dataset Midjourney SDXL DALL·E 2 DALL·E 3 Firefly FLUX SD 3.5 Facebook Reddit Twitter AUC↑/bAcc↑

D3 [2] 99.8 / 85.3 100. / 99.4 100. / 87.5 100. / 90.1 100. / 89.7 98.8 / 63.1 99.9 / 96.4 98.3 / 88.8 95.4 / 86.7 98.1 / 88.2 99.0 / 87.5
Ours 99.9 / 98.8 100. / 99.7 99.7 / 95.9 99.6 / 96.8 100. / 99.6 97.9 / 85.3 99.3 / 95.1 98.0 / 95.0 96.0 / 89.8 99.4 / 96.5 99.0 / 95.2

Training dataset Midjourney SDXL DALL·E 2 DALL·E 3 Firefly FLUX SD 3.5 Facebook Reddit Twitter NLL↓/ECE↓

D3 [2] 0.33 / .156 0.03 / .016 0.27 / .146 0.22 / .120 0.22 / .138 1.07 / .350 0.11 / .048 0.26 / .101 0.32 / .079 0.28 / .105 0.31 / .126
Ours 0.04 / .008 0.01 / .006 0.12 / .044 0.10 / .037 0.02 / .011 0.40 / .149 0.14 / .044 0.17 / .032 0.25 / .043 0.11 / .028 0.14 / .040

Table 8. Ablation study on the influence of the training data. We compare the proposal with the same architecture DINOv2+reg trained
on a publicly available dataset, D3 [2], that includes 4 generators from the Stable Diffusion family. Performance are presented in terms of
AUC/Accuracy (top) and ECE/NLL (bottom).

UnivFD [14]. It exploits pre-trained CLIP features through
linear probing. Fine-tuning is carried out on the same
dataset of real and GAN-generated images as in [20].

DeFake [16]. Both images and their corresponding prompts
are used and fed into the visual and textual encoders of
CLIP. The extracted features are the input of a multilayer
perceptron trained for binary detection.

DIRE [21]. It uses the reconstruction error of a generative
model as the input of a ResNet-50. In fact, this error is
expected to be lower for synthetic images than for real ones.

AntifakePrompt [5]. It relies on a visual question-
answering (VQA) tool, InstructBLIP. The VQA is used with
a fixed question, ”Is this photo real?”, and fine-tuned to pro-
vide accurate responses (”Yes” or ”No”) using a soft prompt
tuning technique. Note that the method provides hard bi-
nary predictions hence only accuracy can be computed.

NPR [18]. In this case a ResNet-50 is fed using a residual
image computed as the difference between the original im-
age and its interpolated version. The idea is to exploit the
artifacts related to the up-sampling process which is com-
mon in several generative models.

FatFormer [13]. It adopts CLIP and introduces forgery-
aware adapters to extract forensic traces from both space
and frequency domains. The method proposes a language-
guided alignment mechanism to supervise the process and
ensure the association between image and text.

FasterThanLies [9]. The method employs a Binary Neural
Network for features extraction phase and a linear classifier
for detection. Beyond the image, the model has two addi-
tional input channels: the Fast Fourier Transform magni-
tude and the Local Binary Pattern image. We report results
using the unfrozen BNext-M backbone.

RINE [8]. It uses features extracted from the intermediate
blocks of a CLIP encoder and an additional trainable mod-
ule to take into account the influence of each block on the
final decision.

AIDE [22]. It leverages hybrid features extracted from a
ConvNeXt-based Open CLIP model and a CNN which is

fed with patches filtered to remove semantic content and
exploit low-level artifacts.

LaDeDA [3]. It is a patch-based classifier that leverages lo-
cal image features. The image is split into multiple patches,
for each patch a prediction is computed and then averaged
to obtain the image-level prediction.

C2P-CLIP [19]. It uses the Low-Rank Adaptation (LoRA)
strategy to fine-tune the image encoder of CLIP. Moreover,
it relies on a contrastive learning strategy based on category
prompts.

CoDE [2]. CoDE trains a Vision Transformer using a con-
trastive loss similar to CLIP. However, while CLIP aims to
learn features for text-image matching, CoDE aims at ob-
taining an embedding space where real and fake images are
effectively separated. We report results using CoDE in com-
bination with the linear classifier.

10. Calibration Metrics
Here we provide some more details about the calibration
metrics used in the paper. The binary Expected Calibration
Error (ECE) is defined as:

ECE =

M∑
m=1

|Bm|
N

|prob(Bm)− pred(Bm)| (1)

where N is the number of samples of the test-set, M is the
number of bins, and Bm is the set of samples whose pre-
dictions fall into the m-th bin, with |Bm| its cardinality.
prob(Bm) and pred(Bm) are the actual probability and the
average predicted probability of the target class in that bin,
respectively. In case of unbalanced test-set, we weigh the
contribution of each sample in the average to re-balance the
relevance between two classes. We used M = 15 bins.

The balanced Negative Log-Likelihood (NLL) is defined
as:

NLL = − 0.5

|S0|
∑
i∈S0

log pi(0)−
0.5

|S1|
∑
i∈S1

log pi(1) (2)

where S0 and S1 are the set of samples of non-target and
target class, respectively, while pi(0) and pi(1) are the pre-



0
20
40
60
80

100

M
id

jo
ur

ne
y

AUC bAccPolarDiffShield Synthbuster FakeInversion

0
20
40
60
80

100

SD
XL

CNNDetect
DMID

LGrad
UnivFD

DeFake DIRE

Antifa
kePro.

NPR

FatFo
rmer

Faste
rThanLies

RINE
AIDE

LaDeDa

C2P-C
LIP CoDE

B-Fre
e (ours)

0
20
40
60
80

100

DA
LL

·E
 3

Figure 10. SoTA performance evaluated in terms of AUC and balanced Accuracy on Midjourney, SDXL and DALL·E generators from
different datasets.

dicted probabilities of the two classes for the i-th input sam-
ple.

11. Additional Ablation
In this Section we further investigate the influence of our
training dataset. We train our network on the very recent
Diffusion-generated Deepfake Detection (D3) dataset [2],
of about 8M synthetic images (from 256 × 256 to 1024
× 1024) from the generators SD 1.4, SD 2.1, SDXL, and
DeepFloyd IF. The images are generated using prompts
taken from the description of the real source from LAION
(text-driven generation). From Tab. 8, we can notice that al-
though the AUC is similar, there is a significant increase in
terms of balanced accuracy (87.5 vs 95.2) and decrease in
terms of both NLL (0.31 vs 0.14) and ECE (0.13 vs 0.04).
This confirms that our training paradigm enables better cal-
ibration and improved generalization.

12. Additional Generalization Analysis
In this Section we conduct further experiments which con-
firm that our method can generalize better than other meth-
ods and obtain less biased results. We also detail results
and show the performance on each synthetic generator for
GenImage and FakeBench datasets.

Evaluation on same generators from different datasets.
Here we further expand on the analysis conducted in Fig. 2
of the main paper where we have shown that some detectors

achieve different performance on the same generator when
the images are taken from two different datasets. This puz-
zling behavior suggests the possibility that these methods
rely on subtle dataset biases besides true traces left by the
synthetic generator. In Fig. 10 we extend this analysis to all
SoTA methods described in Sec. 9. More specifically, we
analyze the performance in terms of AUC and balanced ac-
curacy over three synthetic generators: Midjourney, SDXL
and DALL-E 3 that come from three different datasets Po-
larDiffShield [11], Synthbuster [1] and FakeInversion [4].
As said before, for several methods the performance is not
consistent on the same generator and can vary even by 20%
from one dataset to another. In addition, for some meth-
ods the AUC is around 50%, which corresponds to random
choice, or even below 50% which means that the detector
tends to invert the labels between real and fake.

Evaluation on different synthetic generators. We con-
duct a more detailed analysis of the results on GenImage
(unbiased), where fake images have been subjected to JPEG
compression, similar to real images, to prevent detectors
from exploiting compression artifacts. We also consider
FakeBench [12], that consists of 3,000 real and 3,000 fake
images generated by 10 different models. These datasets
include both GAN and Diffusion-based synthetic images,
which allows us to better understand the ability of our ap-
proach to generalize to different architectures. Results are
presented in Tab. 9 and Tab. 10. We note that our ap-
proach obtains very good results consistently across almost



AUC↑/bAcc↑ GenImage (unbiased)

BigGAN VQDM ADM GLIDE SD 1.4 SD 1.5 Midjourney Wukong AVG

CNNDetect 70.9 / 58.4 63.4 / 51.2 51.8 / 49.9 59.4 / 50.7 65.1 / 50.1 66.4 / 49.9 79.3 / 50.1 62.6 / 50.2 64.8 / 51.3
DMID 74.6 / 52.3 97.6 / 75.1 78.5 / 51.3 94.9 / 56.6 100. / 99.9 100. / 99.8 100. / 97.4 100. / 99.6 93.2 / 79.0
LGrad 18.7 / 28.9 23.9 / 30.8 24.6 / 30.5 22.2 / 30.0 50.0 / 49.8 49.2 / 49.1 50.5 / 50.6 47.6 / 46.9 35.8 / 39.6
UnivFD 96.7 / 86.1 94.8 / 79.7 85.2 / 64.4 88.8 / 63.9 78.7 / 55.5 78.1 / 56.6 74.0 / 54.2 86.9 / 63.7 85.4 / 65.5
DeFake 72.6 / 64.4 71.1 / 64.4 49.3 / 48.5 87.9 / 80.4 93.3 / 85.1 93.4 / 85.4 87.7 / 79.2 89.8 / 81.8 80.6 / 73.7
DIRE 26.6 / 46.9 35.0 / 47.7 25.3 / 46.7 29.9 / 47.0 41.7 / 47.3 39.8 / 47.3 38.0 / 47.5 45.4 / 47.7 35.2 / 47.3
AntifakePrompt - / 81.7 - / 81.1 - / 81.6 - / 81.8 - / 77.1 - / 76.6 - / 70.4 - / 77.6 - / 78.5
NPR 56.9 / 56.3 52.3 / 53.9 46.9 / 50.5 42.1 / 48.3 54.3 / 49.4 53.3 / 49.7 42.3 / 47.4 52.4 / 50.2 50.1 / 50.7
FatFormer 88.5 / 80.1 84.5 / 71.5 69.1 / 60.4 78.4 / 65.1 49.8 / 52.0 48.7 / 53.3 46.2 / 51.6 61.6 / 58.1 65.9 / 61.5
FasterThanLies 78.9 / 54.1 86.8 / 76.6 88.6 / 77.2 83.0 / 66.1 97.8 / 92.2 97.9 / 92.3 83.1 / 69.7 95.4 / 88.1 88.9 / 77.0
RINE 99.4 / 88.5 98.4 / 81.4 93.8 / 63.9 98.1 / 74.7 93.9 / 60.5 94.1 / 61.1 86.3 / 52.4 95.7 / 70.0 95.0 / 69.1
AIDE 73.1 / 50.7 78.0 / 51.0 61.2 / 50.1 80.4 / 52.3 98.2 / 74.5 98.5 / 75.9 88.1 / 57.4 95.9 / 69.3 84.2 / 60.2
LaDeDa 93.1 / 80.3 10.8 / 34.8 6.8 / 34.6 8.8 / 34.5 55.6 / 54.8 53.6 / 53.0 51.3 / 52.1 61.6 / 57.7 42.7 / 50.2
C2P-CLIP 97.2 / 87.5 92.2 / 74.1 86.7 / 71.3 93.6 / 74.8 94.4 / 80.5 94.3 / 79.1 76.3 / 55.9 93.1 / 81.0 91.0 / 75.5
CoDE 70.2 / 50.0 66.8 / 56.0 53.7 / 51.9 78.1 / 58.0 99.4 / 96.6 99.2 / 96.5 86.0 / 69.6 99.1 / 95.0 81.6 / 71.7

B-Free (ours) 94.1 / 68.7 97.0 / 88.7 93.0 / 79.8 95.8 / 85.3 100. / 98.8 100. / 98.8 99.2 / 95.7 100. / 99.0 97.4 / 89.3

Table 9. Performance on each generator included in GenImage (unbiased) dataset in terms of AUC and balanced Accuracy. Bold underlines
the best performance for each column with a margin of 1%.

AUC↑/bAcc↑ FakeBench

ProGAN StyleGAN FuseDream VQDM GLIDE CogView2 DALL·E 2 DALL·E 3 SD Midjourney AVG

CNNDetect 100. / 99.7 98.3 / 75.1 94.8 / 61.1 62.9 / 51.9 62.6 / 50.6 64.9 / 49.7 56.1 / 49.7 58.6 / 49.7 57.2 / 49.7 62.0 / 49.9 71.7 / 58.7
DMID 61.0 / 51.1 80.1 / 52.1 93.1 / 52.4 97.8 / 79.7 94.0 / 63.2 100. / 99.7 94.9 / 55.1 96.7 / 88.9 100. / 99.1 97.3 / 90.7 91.5 / 73.2
LGrad 96.8 / 77.1 82.3 / 72.9 18.9 / 28.4 75.2 / 68.6 41.8 / 43.9 23.7 / 33.6 10.9 / 27.6 30.6 / 35.6 24.7 / 34.1 76.1 / 67.3 48.1 / 48.9
UnivFD 99.9 / 98.6 96.0 / 83.4 99.2 / 96.3 94.6 / 77.3 86.5 / 62.8 84.7 / 63.1 88.0 / 65.9 69.6 / 55.8 76.8 / 56.4 65.5 / 55.6 86.1 / 71.5
DeFake 63.7 / 58.1 73.7 / 66.7 53.8 / 51.0 69.8 / 64.5 81.6 / 74.2 84.7 / 77.2 83.6 / 76.5 81.7 / 74.5 86.4 / 77.3 78.7 / 70.5 75.8 / 69.0
DIRE 90.4 / 89.5 56.6 / 55.4 23.7 / 40.0 91.3 / 89.2 53.2 / 63.7 36.7 / 41.0 44.2 / 43.0 76.6 / 74.5 47.7 / 49.7 83.4 / 81.2 60.4 / 62.7
AntifakePrompt - / 79.0 - / 78.0 - / 78.6 - / 77.0 - / 78.8 - / 75.8 - / 73.4 - / 74.0 - / 71.6 - / 76.1 - / 76.2
NPR 99.5 / 92.4 78.1 / 68.1 48.7 / 42.7 93.4 / 90.9 67.0 / 65.2 50.3 / 42.7 41.7 / 42.9 46.3 / 44.6 57.5 / 51.4 89.0 / 84.6 67.1 / 62.5
FatFormer 100. / 97.6 99.3 / 97.1 90.7 / 81.8 96.8 / 88.5 74.2 / 69.0 47.1 / 53.3 45.3 / 48.1 52.4 / 49.5 50.4 / 51.0 79.6 / 64.6 73.6 / 70.0
FasterThanLies 87.0 / 80.2 72.4 / 57.7 85.7 / 75.4 54.7 / 45.9 76.9 / 62.5 96.0 / 87.7 92.9 / 85.7 73.6 / 60.6 93.6 / 84.5 67.6 / 57.7 80.0 / 69.8
RINE 100. / 99.6 99.3 / 95.1 99.8 / 96.6 98.8 / 88.6 95.4 / 70.2 86.7 / 59.2 93.0 / 60.9 75.1 / 52.6 85.5 / 55.9 82.2 / 61.1 91.6 / 74.0
AIDE 89.4 / 64.3 89.4 / 70.0 71.7 / 47.3 90.7 / 78.1 79.7 / 68.3 85.5 / 60.0 84.1 / 52.6 88.0 / 61.9 86.0 / 64.6 88.0 / 71.5 85.2 / 63.9
LaDeDa 98.0 / 82.5 94.5 / 82.5 37.2 / 40.5 85.8 / 81.5 52.6 / 57.3 39.4 / 41.6 36.4 / 35.3 49.9 / 45.1 45.3 / 46.1 90.7 / 78.1 63.0 / 59.1
C2P-CLIP 100. / 99.5 99.4 / 98.0 98.2 / 93.0 97.1 / 86.7 91.9 / 76.4 67.3 / 61.7 72.6 / 56.9 74.7 / 55.5 74.9 / 59.9 88.1 / 58.0 86.4 / 74.6
CoDE 64.3 / 52.5 53.0 / 49.5 73.4 / 56.3 78.4 / 61.7 91.6 / 78.0 97.7 / 93.7 93.8 / 82.8 95.8 / 89.2 99.5 / 96.2 89.7 / 76.7 83.7 / 73.7

B-Free (ours) 99.3 / 96.4 97.7 / 88.5 99.3 / 95.2 96.5 / 86.5 95.5 / 87.7 100. / 98.9 98.7 / 94.9 99.9 / 98.7 100. / 98.7 98.0 / 94.5 98.5 / 94.0

Table 10. Performance on each generator included in FakeBench dataset in terms of AUC and balanced Accuracy. Bold underlines the best
performance for each column with a margin of 1%.

all generators, while other methods, such as DMID, Uni-
vFD, RINE, FasterThanLies, and FatFormer, perform very
well in terms of AUC only on certain generators. In addi-
tion, for our method the gap between AUC and balanced
accuracy is reduced which ensures more reliable results.

Finally, we generated a set of 2,000 images with two au-
toregressive models [10, 23], whose architecture vastly dif-
fers from the training data. On both models we obtain good
results with an average of 99% of AUC and 94.2% of ac-
curacy, probably due to the similarity between the tokenizer
used in these models and the latent embedders of Stable Dif-
fusion models.

13. Additional Robustness Analysis

We repeat the experiment reported in Figure 6 to test robust-
ness under various operations and carry out comparisons

with SOTA methods. Results are shown in Fig. 11 under
three post-processing operations: JPEG compression, resiz-
ing, and blurring. We can observe that our approach is more
robust by a large margin compared with other methods and
can ensure a balanced accuracy that is always above 80%
even in the most challenging scenario.

Finally we further investigate robustness performance
on FakeInversion [4], where the real images have been
retrieved from the web. To better understand the effect
of compression and resizing we compare the performance
when applying such operations. In particular, to simulate
the upload on social networks, we resize with a scale factor
randomly sampled between 0.7 and 1, and compress with a
JPEG quality factor between 70 and 100. In Tab. 11 results
show that the performance on such dataset drops substan-
tially, except for DMID and our method, though our ap-
proach has better calibration metrics.
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Figure 11. Robustness analysis in terms of balanced Accuracy
carried out on nine generators of Synthbuster under three differ-
ent post-processing operations: JPEG compression, resizing and
blurring. The five best performing SoTA detectors on Synthbuster
have been included in the analysis.

Original Social network simulation

AUC↑/bAcc↑ NLL↓/ECE↓ AUC↑/bAcc↑ NLL↓/ECE↓

CNNDetect 54.3 / 50.9 7.94 / .488 51.8 / 50.1 8.73 / .498
DMID 97.3 / 96.1 0.25 / .041 94.4 / 81.3 0.55 / .182
LGrad 84.4 / 77.2 2.27 / .200 60.2 / 55.4 7.59 / .426
UnivFD 54.9 / 52.8 2.19 / .391 49.7 / 50.0 2.57 / .434
DeFake 69.8 / 63.3 0.95 / .225 69.3 / 62.7 0.98 / .236
DIRE 53.3 / 51.8 13.4 / .360 55.5 / 51.7 13.4 / .358
AntifakePrompt - / 53.9 - / - - / 54.8 - / -
NPR 91.6 / 87.0 4.96 / .123 43.3 / 49.9 27.1 / .501
FatFormer 68.2 / 59.7 3.45 / .386 48.7 / 50.4 5.44 / .490
FasterThanLies 49.7 / 48.6 3.64 / .476 51.0 / 49.9 3.13 / .458
RINE 69.6 / 63.6 4.84 / .319 62.4 / 52.9 6.28 / .437
AIDE 85.5 / 76.9 0.54 / .137 67.3 / 56.4 0.93 / .276
LaDeDa 91.7 / 84.7 3.03 / .129 51.9 / 53.1 24.8 / .454
C2P-CLIP 74.1 / 59.6 0.82 / .260 71.9 / 59.0 0.89 / .284
CoDE 87.5 / 78.7 0.74 / .143 82.5 / 74.4 0.89 / .173

B-Free (ours) 99.3 / 86.3 0.32 / .144 98.5 / 86.4 0.32 / .131

Table 11. Performance on FakeInversion dataset. We show results
on the original dataset and on a post-processed version, to simulate
the upload on social networks.
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