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A. Datasets Preparation

Each dataset was downloaded from its official source, fol-
lowing standard procedures. Whenever possible, we used
officially provided PyTorch dataloaders to access the rel-
evant information (i.e., images, intrinsics, extrinsics, and
depth maps), and wrote our own if not available. In all
cases, data was mapped into a common format to enable
mixed-batch training across all data sources. This includes
padding images and intrinsics of different resolutions, and
using empty depth maps whenever this label is not avail-
able. We treat video and multi-view datasets equally, by
positioning all available cameras from the same scene on a
global frame of reference, and considering all possible pairs
as a potential source of training data. To select valid pairs
for our purposes, we utilized three criteria, described below:
Camera center distance. Conditioning views must have a
camera center distance within tnc within cmin < ||tnc −tt|| <
cmax, where t is the camera’s translation vector. In the case
of dynamic datasets, we also apply the same constraint in
a temporal sense to mitigate the impact of moving objects,
such that tmin < ||tnc − tt|| < tmax, where t is the timestep
of each camera within the sequence (fractional timesteps
are used in the case of datasets with multiple asynchronized
cameras). Assuming cM to be the maximum distance across
any two cameras in a sequence, we set cmin = 0.05 cM and
cmax = 0.2 cM , and tmin = −8 and tmax = 8.
Camera viewpoint angle. Conditioning views must have
a viewing direction with cosine similarity within αmin <

cos−1 vnc ·vt
||vnc ||||vt||

< αmax, where v = R−1 × [0, 0, 1]T is
a vector pointing forward (positive z) relative to a world-
to-camera rotation matrix R. In all experiments, we set
αmin = 0 and αmax = π/2 for depth generation, to avoid
supervision from sparse reconstructions, and αmin = 0 and
αmax = π for image generation, to promote extrapolation
to novel viewpoints.
Pointcloud overlapping. Whenever depth maps are avail-
able, we set a threshold pmin on the percentage of how
many valid pixels of each conditioning view are projected

onto the target view. For each pixel pn
c = {u, v} with depth

d from a conditioning view Inc with depth Dn
c , we can obtain

its projection p′
t and depth d′t onto the target view via:
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]
∈ R4×4 is a homogeneous intrinsics ma-

trix. A projected point is considered valid if u′ ∈ [0, H] and
v′ ∈ [0,W ], i.e. if its projected coordinates are inside the
target view. We set pmin = 30%, and additionally discard
samples with less than 64 valid projected pixels.

These criteria were used as a pre-processing step, to
generate a list of valid training samples. We will open-
source dataloaders for all training and validation datasets,
to facilitate the reproduction of our work, as well as the
list of valid samples used in our experiments. We use
Webdataset [1] to optimize storage and training effi-
ciency.

B. Additional Qualitative Examples
In Figure 1 we provide additional qualitative results of
MVGD in different evaluation benchmarks, as well as in-
the-wild images from different sources (complementing
Figure 3 of the main paper). Conditioning images are shown
in the top left, with corresponding cameras (denoted by dif-
ferent colors) positioned relative to the target camera (de-
note by black). On the bottom, from left to right, we show:
ground-truth image, predicted novel image, and predicted
novel depth, all from the target viewpoint. We emphasize
that novel images and depth maps are generated directly as
an output of our diffusion model, rather than rendered from
a 3D neural field or set of 3D Gaussians.

To highlight the multi-view consistency of MVGD, in
Figure 2 we show qualitative results obtained using the
same conditioning views to generate multiple predictions
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Figure 1. Zero-Shot MVGD novel view and depth synthesis results randomly sampled from different evaluation benchmarks and in-the-
wild datasets. Top left images are conditioning views (colored cameras), and bottom images are the target view (black camera), showing
from left-to-right: ground-truth image, predicted image, and predicted depth map. These predictions are used to produce a colored 3D
pointcloud observed from the target viewpoint.



Figure 2. Accumulated MVGD pointclouds, obtained by generating novel images and depth maps from various viewpoints (black
cameras), using the same conditioning views (colored cameras), and stacking them together without any post-processing. Our zero-shot
architecture is capable of directly generating multi-view consistent predictions that match the scale from conditioning cameras.



Figure 3. Accumulated MVGD pointclouds on a dynamic dataset [4]. (left) Red cameras are used as conditioning views, and novel
images and depth maps are generated from green cameras. (right) Colored pointclouds are calculated from these predictions and stacked
together without any post-processing. Even though MVGD does not explicitly model dynamic objects, it implicitly learns how the scene
should change when interpolating between views with objects in different locations (e.g., moving cars), while keeping the remainder static.

from novel viewpoints, and stacking the predicted colored
pointclouds together without any post-processing. Each
prediction is generated independently, by setting the novel
viewpoint as the origin and positioning the conditioning
views relative to it. Even so, they yielded highly consis-
tent pointclouds, both in terms of appearance as well as

reconstructed 3D geometry. We attribute this consistency
(and ablate it in Table 5 of the main paper) to our proposed
scene scale normalization (SSN) procedure, that promotes
the generation of depth maps that share the same scale as
the one provided by conditioning cameras, even in very dif-
ferent settings (e.g., driving, indoors, object-centric).
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Figure 4. MVGD per-frame novel view and depth synthesis results using different numbers of fixed conditioning views, on ScanNet
(scene 0086 02, with 1267 images). The same model from all experiments reported in the main paper was used. Legend numbers indicate
the stride (i.e., how many target images are positioned between each conditioning view). As expected, results consistently improve as more
input information is available, eventually plateauing at around 100 conditioning views.

C. Implicit Dynamics Modeling

Although MVGD does not explicitly model dynamic ob-
jects, we elected to include datasets with such behavior to
increase the diversity of our training data, and report non-
trivial improvements relative to a baseline that only con-
siders static datasets (Table 8 of the main paper). We at-
tribute this behavior to a learned robustness to the presence
of dynamic objects [6], similar to other methods that rely
on self-supervised multi-view consistency with a static en-
vironment assumption [3–5].

However, upon further inspection we observed some de-
gree of implicit motion understanding in our learned rep-
resentation. Examples are shown in Figure 3, using the
DDAD [4] dataset. In those examples, every 10th frame
from a 100-frame sequence was used as conditioning, and

remaining cameras were used to generate novel images and
depth maps. As we can observe, moving cars are correctly
rendered in different locations to ensure a smooth transition
between frames, while static portions of the environment
are rendered in the same location, taking into consideration
only camera motion.

D. Incremental Conditioning
Here we explore how MVGD scales in terms of the number
of conditioning views. Due to the use of latent tokens, com-
putational complexity is largely independent of the num-
ber of input tokens, which enables (a) pixel-level diffusion
without the need for dedicated auto-encoders; and (b) the
simultaneous use of more conditioning views. In fact, one
target 256× 256 image generates 65536 prediction tokens,
while each conditioning views adds only 4096 scene tokens,
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Figure 5. MVGD per-frame novel view and depth synthesis results with and without our proposed incremental conditioning strategy,
on ScanNet (scene 0086 02, with 1267 images). The same model from all experiments reported in the main paper was used. The blue line
indicates a fixed number (25) of conditioning views, evenly spaced with a stride of 50. The red line indicates our proposed incremental
conditioning strategy, in which each new generation uses previously generated images as additional conditioning. This strategy leads to
consistently better and more stable results in novel view and depth synthesis, especially in regions further away from conditioning views.

since image features are produced at 1/4 the original reso-
lution. In contrast, our largest model has 2048 latent tokens,
which is only 3% of the number of prediction tokens.

In Figure 4 we show the impact of using more condition-
ing views over a 1267-frame ScanNet sequence, in terms
of novel view (PSNR) and depth (AbsRel) synthesis. We
take every N -th frame as conditioning views (given by the
legend number), and generate predictions for all remaining
frames, using the same model from all experiments reported
in the main paper. As expected, results degrade in areas fur-
ther away from available views, and consistently improve as
more conditioning views are provided, eventually plateau-
ing at around 100 (stride 20). Interestingly, independent

experiments using subsets of the sequence (5 subsets of 250
frames) yielded worse results, as evidence that large-scale
conditioning (i) does not degrade local performance; and
(ii) provides better global context for local predictions.

As mentioned in Section 3.6 of the main paper, we also
take advantage of this highly efficient architecture to in-
vestigate how images generated from novel viewpoints can
be added as additional conditioning views, thus increasing
the amount of available information for future generations.
This incremental conditioning strategy should further im-
prove multi-view consistency in cases where model stochas-
ticity becomes relevant, since each novel view is generated
independently and thus might come from different parts of



(a) 149 frames, 5 initial conditioning views. (b) 202 frames, 7 initial conditioning views.

(c) 252 frames, 5 initial conditioning views. (d) 337 frames, 6 initial conditioning views.

(e) 1268 frames, 25 initial conditioning views. (f) 5578 frames, 60 initial conditioning views.

Figure 6. MVGD novel view and depth synthesis results using our proposed incremental conditioning strategy. Red cameras indicate
initial conditioning views, used to generate predictions for green cameras (ordered from closest to furthest away from the initial conditioning
views). After each generation, the predicted image is added to the set of conditioning views for future generations. Even though MVGD
was trained using only 2− 5 conditioning views, it can directly scale to thousands on a single GPU.

the underlying distribution, especially in unobserved areas.
Figure 5 provides a quantitative evaluation of our proposed
incremental conditioning strategy in terms of novel view
(PSNR) and depth (AbsRel) synthesis, compared to the use
of a fixed number of conditioning views. As we can ob-
serve, the introduction of additional conditioning from gen-

erated views consistently improves generation quality,
In Figure 6 we qualitatively show incremental condition-

ing results on different sequences. Red cameras serve as
initial conditioning, and novel images and depth maps are
generated from green cameras. After each generation, the
predicted image is used as additional conditioning. Since



generation order matters in this setting, each new genera-
tion is performed on the green camera closest to the ini-
tial set of conditioning cameras, that still has not been pro-
cessed. Note that all previously generated views are used as
additional conditioning, which in some scenarios could lead
to thousands of images. Even so, we were able to gener-
ate novel predictions on a single A100 GPU with 40GB. In
terms of inference speed, generations with 25 conditioning
views in this setting take 0.5s, and generations with 1250
(50×) conditioning views take around 20s (40×). Addi-
tional heuristics, such as using only generated views close
to the target view, should lead to increased efficiency while
still improving generation quality.

E. Limitations
A limitation of our proposed Scene Scale Normalization
(SSN) procedure is its inability to simultaneously gener-
ate predictions from multiple viewpoints, since the target
camera is always assumed to be at the origin. In Section D
we describe an incremental conditioning strategy that miti-
gates stochasticity when generating predictions from unob-
served regions, leading to multi-view consistency over very
long sequences (2000+ frames). Another current limitation
of MVGD is the lack of dynamics modeling. In Section
C we show some evidence of implicit modeling of mov-
ing objects, however the proper handling of dynamic scenes
(e.g., via temporal embeddings and motion tokens, such as
[2]) could lead to improvements and spatio-temporal con-
trol over novel view and depth synthesis. Moreover, we be-
lieve the lack of large-scale dynamic datasets with accurate
camera information still constitutes a challenge for the gen-
eration of such spatio-temporal implicit foundation model.
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