Appendices

A. Details about OPS
A.1. Proofs Omitted in the Methodology Section

We define an open set in the hypothesis space H based on
the open ball defined in Sec 3.2. Specifically, we call a set
H C H an open set if it satisfies the following property: for
any x € H, there exists > 0 such that B,.(z) C H.

Lemma 1. A subset H of the hypothesis space H is a
nonempty open set if and only if H can be written as a union
of open balls.

Proof. Suppose H is an open set. Then, for any x € H,
there exists r, > 0 such that B, () C H. On one hand,
x € B, (x), so:

HC U B, (x).

ceH

On the other hand, B, () C H, hence:

U B, (x) C H.

zeH

Therefore, H can be expressed as the union of open balls
B, (z). Next, suppose H = J, 7 B, (), where T is an
index set. For any y € H, there exists x € Z such that y €
B, (x). Letd(x,y) = s < ry. It follows that B, _4(y) C
B, (x) C H. This is because, for any z € B, _s(y), we
have:

d(xaz) < d(x,y) + d(yvz) <s+ (7“1 - 3) =Tg,

which implies z € B, (z). Thus, the necessity of the con-
dition follows, and H is an open set. O

Theorem 1. The neighborhood system defined in Sec 3.2
induces a topology on the hypothesis space.

Proof. We verify the three axioms of topology one by one:

1. The empty set () and the entire space H are open.

By definition, () has no elements and trivially satisfies
any condition. The entire space H contains all open balls
B,.(x) C H. Therefore, both sets are open.

2. The union of any collection of open sets is open.

By Lemma 1, each open set can be written as a union of
open balls. Thus, the union of open sets is also a union
of open balls, and hence it is open.

3. The intersection of a finite number of open sets is open.
Let Hy, Ho, ..., H, be open sets. Forany = € (., H;,
since each H; is open, there exists r; > 0 such that
By, (x) € H;. Letr = min{ry,re,...,7,}. Then
B,(z) € N, H;, which implies that (;"_, H; is open.

The above confirms that the neighborhood system satis-
fies the topology axioms. O

Theorem 2. If the surrogate model fy satisfies the Lipschitz
condition, i.e., there exists a constant C' > 0 such that for
all x1,x9 € REXWXC,

| fo(x1) = fo(x2)[| < Cllx1 — %2,

then for any perturbation 0, the difference between fy and
the perturbed model f'(x) = fo(x + §) satisfies:

d(fe, f') < Cllé]l;

where || - || denotes a norm.

Proof. By definition, the difference between fy and f is:

d(fo. ') = / T (Fo3). ) — T (fa(x + 6). )] - p(x) dx.

Let Cy > 0 be the Lipschitz constant of fs and let Cy > 0
be the Lipschitz constant of 7. Then, we have:

T (fo(x),y) = T (fo(x+6),y)| < Cr-[ fo(x)—fo(x+3)]|.
Applying the Lipschitz condition of fy:

[fo(x) = fo(x + d)Il < Crlid].

Substituting this back, we obtain:

[T (fo(x),y) = T (fox +0),y)| < Cg - Cylld].

Thus,
d(fo f') < / Cr - Cy18]] - plx) dx.

Since [ p(x)dx = 1, we have:
d(fe. f') < C7 - Cylid].
Defining C' = C5 - C, we conclude:
d(fe, f') < Cll4]-
This completes the proof. O
A.2. Discussion: OPS vs. IT-Based Methods

For convenience of expression, we introduce the notation
IT (Input-Transformation) here. As described in the Re-
lated Work, the guiding principle of IT-based methods is
input diversity. Specifically, multiple transformed images
are generated through different ITs and then fed into the
surrogate model to compute the average gradient for updat-
ing the adversarial example. This leads to two limitations:
(1) Input expansion results in computational graph expan-
sion, requiring larger GPU memory. (2) Gradient coupling



of similar operators. Most methods apply ’different ITs’,
which are essentially similar transformations under differ-
ent parameter settings. The gradients obtained from similar
operators are quite similar, leading to lower computational
efficiency.

In OPS, our goal is not to increase input diversity, but
rather to emphasize increasing gradient diversity while en-
suring the effectiveness of the gradient. Therefore, the op-
erator set P in OPS contains different types of IT operators,
and a random operator is selected each time to compute the
gradient. This is similar to the shuffle operation in ACE [6],
which not only avoids input inflation but also achieves gra-
dient decoupling, thereby surpassing all the baseline meth-
ods in terms of memory usage and computational efficiency.

A.3. Details about the Basic Operator Set

We approximate the original dataset using the 1,000 sam-
ples employed for attacks to estimate d( fy, fo © op). Based
on the estimation results, we select a batch of operators that
induce relatively small perturbations to the surrogate model,
forming the basic operator set Py,. Specifically: For opera-
tors in OPS,,,,4, the selection criterion is d( fp, fg o op) < 2.
While for operators in OPS,,, the selection criterion is
d(fe, fg o Op) < 0.05.

Basic Operator Set for OPS;,,,

The basic operator set for image data includes three cate-

gories of transformations:

1. Common Data Augmentation Transformations. In-
cluding vertical flip, horizontal flip, vertical shift, hor-
izontal shift, and rotation. For rotation, the angles are
selected as: +5°, £15°, £45°, £90°, 180°

2. Scaling Transformations Inspired by SIM. Instead
of using the scaling factor v = 1/2% as in SIM, we
adopt a simplified approach with v = 1/i, where i €
{2,3,4,5,6,7,8}.

3. Random Resizing and Padding Inspired by DIM.
The resizing operation uses the following scale factors:
1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5,2.7,2.9.

Basic Operator Set for OPS,,.

For point cloud data, the basic operator set comprises three

rigid transformations and one point perturbation operator:

1. Scaling. The scaling operation adjusts the size of the
point cloud by a scaling factor s. The scaling factors
chosen are:

s € (0.8,0.85,0.9,0.95,1.05,1.1,1.15.

2. Rotation. The rotation operation applies rotations along
the three axes (zx, y, and z) of the point cloud. The ro-
tation angles «, (3, and -y are chosen from the following

set of parameter combinations:

(a, B,7) € {(0.5,—1.0,0), (0,0,0.5),
(=1.0,0.5,0), (1.5,0, —1.0),
(1.5,0,—0.5), (1.0,1.5, —0.5),
(=1.0,1.5,1.0)}.

3. Translation. The translation operation shifts the entire
point cloud along the x, y, and 2z axes. The translation
vectors selected are:

(z,y, 2) € {(0.02,0.05, —0.04), (0.04,0,0),
(0,0.01, —0.05), (—0.04, 0.03,0),
(—0.04,0.03, —0.03), (0.03, 0.05, 0.01),
(—0.03,0,0.05)}.

4. Point Perturbation. The point perturbation operator se-
lects a random point within the point cloud and applies a
scaling factor r to it. The available scaling factors are:

r€{0,0.3,0.6,0.9,1.2,1.5}.

B. 3D Transfer Attack Benchmark

In the field of 3D adversarial transferability research, there
is currently a lack of publicly available evaluation bench-
marks. This absence hinders fair comparisons between dif-
ferent methods and leads to poor reproducibility of results.
To address this issue, we propose 3DTAB (3D Transfer
Attack Benchmark), a comprehensive benchmark that in-
corporates the latest advancements in 3D point cloud clas-
sification and adversarial attack research. It provides a uni-
fied framework for model training and attack evaluation, en-
abling consistent and reliable comparisons across methods.
Furthermore, as white-box attacks can be regarded as a spe-
cial case of the transfer attack where the surrogate model
is identical to the target model, 3DTAB also supports the
evaluation of white-box attack techniques.

B.1. Threat Model

The default threat model in 3DTAB is as follows:

1. Untargeted attacks under the transfer attack. The at-
tacker generates adversarial examples using a surrogate
model and then applies them to attack the target model.

2. The size of the perturbation A satisfies a hard con-
straint, with the default setting being || A || < 0.06.

3. The attack method used by the attacker is point pertur-
bation.

B.2. Dataset Setting

Following previous studies, we used the preprocessed Mod-
elNet40 [40] from Qi et al. for model training and at-
tack method evaluation. For model training, we employed



farthest point sampling to sample each sample to 1024
points and maintained consistency in data augmentation.
For the evaluation of attack methods, we randomly selected
25 samples from each category, totaling 1000 samples, to
form a small dataset for attack evaluation, referred to as
ModelNet40-mini.

B.3. Model Setting

Previous research has generally employed small-scale mod-
els, utilizing PointNet [26], PointNet++ (SSG), PointNet++
(MSG) [27], and DGCNN [36], for a total of 4 mod-
els. In this study, we expand this number to 20, en-
compassing the research results from 14 studies including
PointConv [38], CurveNet [25], PointCAT [15], PT [45],
PCT [9], PointMLP [24], VN-PointNet [3], among oth-
ers. The training settings and accuracy for each model are
shown in Tab. 2

B.4. Attacker and Defenser

We have integrated commonly used baselines and the lat-
est attack methods in 3D point cloud attacks, including:
3D-Adv [42], KNN [30], GeoA? [37], HiT-Adv [23], Ad-
vPC [10], AOF [20], and PF-Attack [11]. For defense meth-
ods, we provide four commonly used defenses: SOR, SRS,
Dup-Net [46], and IF-Defense [41]. We are also actively
porting image-based transfer attacks to point clouds, with
ported methods including: FGSM [8], MI [4], NI [17],
VMI [32], EMI [33], GRA [28], SIM [18], IR [34], etc. As
seen, most of these are gradient-based methods, as many
input transformation-based methods are closely tied to the
modality and are difficult to adapt to point clouds.

C. More experimental results
C.1. Experiments on Vision-Language Models

We conducted experiments on CLIP’s zero-shot classifica-
tion task (Tab. 1) to assess the impact of our adversarial
examples. The results demonstrate that our examples cause
a greater disturbance to CLIP’s performance compared to
existing methods, highlighting the effectiveness of our ap-
proach in transferring adversarial attacks to vision-language
models.

Methods ‘ No Attack ‘ VMI NCS L2T ‘ OPS-5  OPS-30
Accuracy(%) 712 373 249 167 13.7 59
Change(]) 0.0 -399 -523 -60.5 | -63.5 -71.3

Table 1. The impact of different methods on Clip accuracy.

C.2. Experiments on Different Surrogate Models

To analyze the impact of different surrogate models on the
transferability of adversarial examples, we conducted ma-

trix experiments on ResNet-18, ResNet-101 [12], ResNext-
50 [43], DenseNet-121 [14], ViT [5], PiT [13], Vis-
former [1], and Swin [22], and reported their attack success
rates, as shown in Tab. 3, Tab. 4, Tab. 5, Tab. 6, Tab. 7,
Tab. 8, Tab. 9, Tab. 10. The experimental results show
that the proposed method exhibits excellent attack transfer-
ability across all surrogate models and significantly outper-
forms existing methods on all target models. This result
strongly validates the effectiveness of our method in gener-
ating adversarial examples across architectures and tasks.



Model LR Epochs | Batch Size | Optimizer Scheduler Acc (%) | Acc-mini (%)
PointNet (2017) 0.001 200 600 Adam CosineAnnealingL.R 89.71 91.8
PointNet++ (SSG) (2017) 0.001 200 100 Adam CosineAnnealingLR 91.13 95.0
PointNet++ (MSG) (2017) | 0.001 200 50 Adam CosineAnnealingL.R 92.75 96.1
PointCNN (2018) 0.001 200 800 Adam CosineAnnealingLR 89.18 89.3
PointConv (2019) 0.001 200 150 Adam CosineAnnealingLR 91.65 93.0
DGCNN (2019) 0.001 200 50 Adam CosineAnnealingL.R 92.54 95.8
RSCNN (2019) 0.001 200 50 Adam LambdalLR 91.73 94.5
CurveNet (2020) 0.001 200 200 Adam CosineAnnealingLR 92.30 95.4
PT (2021) 0.001 200 50 Adam StepLR 91.13 94.0
PCT (2021) 0.001 200 50 Adam StepLR 91.69 94.6
VN-PointNet (2021) 0.01 200 50 SGD StepLR 80.06 78.0
VN-DGCNN (2021) 0.1 250 40 SGD CosineAnnealingL.R 89.02 89.0
PointMLP (2022) 0.1 300 40 SGD CosineAnnealingLR 93.40 96.5
PointMLP (Elite) (2022) 0.1 300 40 SGD CosineAnnealingL.R 92.83 95.7
PT-v1-26 (2021) 0.05 200 50 SGD MultiStepL.R 90.60 89.2
PT-v1-38 (2021) 0.05 200 50 SGD MultiStepLR 90.80 94.4
PT-v1-50 (2021) 0.05 200 50 SGD MultiStepLR 92.10 94.4
PT-v2 (2022) 0.05 200 50 SGD MultiStepL.R 92.83 94.5
Point-PN (2023) 0.001 300 50 Adam CosineAnnealingLR 91.73 94.0
PointCAT (2024) 0.01 250 50 SGD CosineAnnealingL.R 92.18 95.3

Table 2. Training settings and accuracy for different models. We report the accuracy on ModelNet40 (Acc) and ModelNet40-mini (Acc-
mini). The PT-v1 series is derived from the implementation of PT [45] in Pointcept [2]. For detailed optimizer and scheduler settings,
please refer to the code.

Category Attack ResNet-18 = . . . .
ResNet-18 ResNet-101  ResNext-50 DenseNet-121  ViT  PiT  Visformer Swin
VMI (2021) 100.0* 62.2 65.7 89.5 283 394 53.2 59.1
Gradient-based GRA (2022) 100.0* 66.2 72.0 94.2 30.7 41.0 54.8 63.6
PGN (2023) 100.0%* 69.3 71.7 94.9 32,5 435 56.7 65.7
NCS (2024) 100.0%* 78.8 82.2 96.9 433 537 67.9 74.8
Input SIA (2023) 100.0%* 86.4 89.9 99.3 42,5 59.1 77.2 76.7
transformation- | DeCoWA (2024) 100.0%* 84.8 88.0 98.7 56.1 65.2 79.8 79.8
based BSR (2024) 100.0%* 85.1 88.4 98.6 41.1 581 76.1 75.6
OPS;,,., (Ours) OPS(10, 5, 5) 99.8%* 88.8 90.3 98.6 58.7 68.1 81.4 82.1
ma OPS(10, 10, 10) 100.0* 94.8 95.6 99.7 71.2 77.1 88.7 89.9

Table 3. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using ResNet-18 as the
surrogate model. The best results are highlighted in bold, and * indicates white-box attacks.

ResNet-101 —

Category Attack ResNet-18  ResNet-101  ResNext-50 DenseNet-121  ViT  PiT  Visformer Swin
VMI (2021) 623 8847 653 66.5 328 436 496 513

Gradiontbased | ORA C022) 80.9 92.5% 81.9 81.9 566 668 706 702
PGN (2023) 86.5 96.5% 89.3 88.7 634 724 783 719

NCS (2024) 80.2 91.3% 81.7 81.8 507 681 730 723

Toput SIA (2023) 86.4 95.0% 90.0 89.0 531 718 792 780
transformation- | DeCoWA (2024) |  93.1 96.9% 91.6 94.5 650 764 847 828
based BSR (2024) 84.6 94.5% 88.3 88.2 499 692 768 743
OPS(10, 5, 5) 018 95.1% 917 2.7 756 808 854 852

OPSimg (Ours) | pg 10, 10. 10) 96.2 97.6* 95.8 97.0 854 883 922 90.6

Table 4. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using ResNet-101 as the
surrogate model. The best results are highlighted in bold, and * indicates white-box attacks.



ReNext-50 —-

Category Attack ResNet-18  ResNet-101  ResNext-50 DenseNet-121  ViT  PiT  Visformer Swin
VMI (2021) 61.2 60.3 90.5* 634 28.7 41.6 49.2 50.0

Gradient-based GRA (2022) 80.6 83.1 92.7% 82.7 55.6 653 70.7 72.1
PGN (2023) 86.4 88.4 97.5% 89.0 585 724 77.1 77.9

NCS (2024) 81.7 82.8 93.3% 83.4 57.5 67.9 72.9 73.7

Input SIA (2023) 82.9 85.0 96.7* 87.2 43,1 63.5 73.8 72.1
transformation- | DeCoWA (2024) 89.7 87.4 96.9% 91.7 583 71.7 80.9 77.8
based BSR (2024) 81.0 83.3 96.0* 86.0 39.7  60.0 71.4 69.7
OPS;,,, (Ours) OPS(10, 5, 5) 91.9 90.5 96.3* 92.8 72.0 80.3 85.0 84.6
“ma OPS(10, 10, 10) 96.4 95.5 98.6%* 96.9 82.7 884 91.9 91.5

Table 5. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using ResNext-50 as the
surrogate model. The best results are highlighted in bold, and * indicates white-box attacks.

DenseNet-121 —-

Category Attack ResNet-18  ResNet-101  ResNext-50 DenseNet-121  ViT ~ PiT  Visformer Swin
VMI (2021) 884 741 752 99.0% 377 471 628 613

Gradiontbased | ORA C022) 97.3 87.9 89.4 99.9% 524 639 765 791
PGN (2023) 96.5 88.5 90.0 100.0% 542 662 779 808

NCS (2024) 97.2 91.4 91.9 99.9% 622 707 829 845

Tnput SIA (2023) 8.8 014 94.4 99.0% 483 659 834 815
transformation- | DeCoWA (2024) | 97.9 88.4 90.3 100.0* 583 684 826 810
based BSR (2024) 98.7 89.7 93.3 100.0* 488 65.6 82.7 79.4
OPS,.. (Ours) | OPSU0.5.5) 98.7 934 941 99.0% 650 745 867 850
img OPS(10, 10, 10) 99.3 97.1 97.5 100.0% 753 839 928 918

Table 6. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using DenseNet-121 as the
surrogate model. The best results are highlighted in bold, and * indicates white-box attacks.

Category Attack ViT — . . . .
ResNet-18 ResNet-101  ResNext-50 DenseNet-121 ViT PiT  Visformer Swin
VMI (2021) 58.9 46.5 50.1 59.7 98.1* 55.6 56.8 67.7
Gradient-based GRA (2022) 71.3 64.8 65.9 72.2 97.5% 714 71.2 78.2
PGN (2023) 76.3 69.4 69.2 77.7 97.5% 754 76.0 81.8
NCS (2024) 75.3 68.0 69.6 75.9 96.6% 75.3 75.6 82.5
Input SIA (2023) 77.9 737 74.7 0.8 97.7% 822 81.4 85.9
transformation- | DeCoWA (2024) 81.1 72.9 75.8 83.2 91.4% 819 81.4 81.4
based BSR (2024) 76.1 70.5 722 77.9 94.3% 78.8 76.7 79.9
OPS(10, 5, 5) 83.7 78.2 80.1 84.9 04.9% 839 83.9 85.3
OPSimg (Ours) | pg10. 10. 10) 90.3 86.8 88.7 91.8 96.9% 911  90.6 9.8

Table 7. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using ViT as the surrogate
model. The best results are highlighted in bold, and * indicates white-box attacks.



PiIT =

Category Attack ResNet-18 ResNet-101 ResNext-50 DenseNet-121  ViT PiT Visformer Swin
VMI (2021) 59.8 50.5 53.2 60.4 456 96.0% 61.3 63.4

Gradient-based GRA (2022) 73.7 68.7 70.4 74.4 67.0 94.4* 77.0 77.4
PGN (2023) 76.2 70.3 72.2 75.8 68.8 93.7* 76.7 78.7

NCS (2024) 75.4 71.4 72.2 77.9 69.6 94.1% 77.5 79.3

Input SIA (2023) 30.1 773 0.0 83.4 724  992% 88.2 88.3
transformation- | DeCoWA (2024) 83.9 77.1 81.4 88.5 76.5 97.4% 89.1 89.9
based BSR (2024) 78.9 73.2 77.8 81.8 67.1 98.6% 85.2 86.6
OPS(10, 5, 5) 88.9 85.9 86.2 89.5 85.1 05.8% 91.2 91.8

OFSimg (Ours) | pg10. 10. 10) 943 91.3 91.4 94.4 91.5 983* 954 95.6

Table 8. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using PiT as the surrogate
model. The best results are highlighted in bold, and * indicates white-box attacks.

Visformer —

Category Attack ResNet-18  ResNet-101  ResNext-50 DenseNet-121  ViT  PiT  Visformer Swin
VMI (2021) 712 635 66.8 735 543 702 971 766

Gradiontbased | ORA C022) 792 74.9 77.1 80.5 706 790  933% 821
PGN (2023) 84.1 80.1 81.0 85.2 765 829  95.7% 854

NCS (2024) 842 81.7 82.1 87.1 766 835  96.6% 873

Tnput SIA (2023) 87.0 83.6 86.1 90.7 680 885  992% 927
transformation- | DeCoWA (2024) |  93.1 86.0 89.6 95.1 759 91.0  99.4% 936
based BSR (2024) 84.7 79.3 82.0 89.3 60.9 86.6 99.2( 89.6
OPS,.. (Ours) | OPSU0.5.5) 95.1 92.6 93.4 95.6 883 938  985* 90438
img OPS(10, 10, 10) 97.5 96.0 97.0 98.6 93.0 965 99.4*  97.8

Table 9. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using Visformer as the surrogate
model. The best results are highlighted in bold, and * indicates white-box attacks.

Category Attack Swin —> . . X .
ResNet-18  ResNet-101  ResNext-50 DenseNet-121  ViT  PiT  Visformer Swin
VMI (2021) 58.7 45.0 49.4 58.6 457 54.0 59.9 97.4%
Gradient-based GRA (2022) 84.1 72.7 76.1 84.7 752 80.1 84.3 99.5%
PGN (2023) 86.4 75.2 80.2 86.9 774 838 87.7 994
NCS (2024) 86.9 80.3 82.1 88.9 81.8 85.5 91.0 99.2%
Input SIA (2023) 80.6 67.8 72.9 81.2 569 77.8 844 99.0%
transformation- | DeCoWA (2024) 91.7 79.5 83.1 92.0 703 89.3 91.4 98.2%
based BSR (2024) 82.1 71.7 76.4 84.2 57.6 83.1 86.4 98.2%
OPS(10, 3, 5) 935 88.0 89.7 93.2 854 917 93.9 98.9%
OPSimg (Ours) | b (10, 10. 10) 97.5 95.5 96.2 97.6 937 968 985  99.5%

Table 10. Attack success rates (%) of different attack algorithms on seven normally trained image classifiers, using Swin as the surrogate
model. The best results are highlighted in bold, and * indicates white-box attacks.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu,
Longhui Wei, and Qi Tian. Visformer: The vision-friendly
transformer. In ICCV, pages 589-598, 2021. 3

Pointcept Contributors. Pointcept: A codebase for point
cloud perception research. https://github.com/
Pointcept/Pointcept, 2023. 4

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks.
In ICCV, pages 12200-12209, 2021. 3, 4

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In CVPR, pages 9185-9193, 2018.
3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostata Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021. 3

Eric et al. Accelerated coordinate encoding: Learning to
relocalize in minutes using rgb and poses. In CVPR, 2023. 2
Zhijin Ge, Hongying Liu, Wang Xiaosen, Fanhua Shang,
and Yuanyuan Liu. Boosting adversarial transferability by
achieving flat local maxima. NeurIPS, 36:70141-70161,
2023. 4,5,6

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015. 3
Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187-199, 2021.
3,4

Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard
Ghanem. Advpc: Transferable adversarial perturbations on
3d point clouds. In ECCV, pages 241-257. Springer, 2020.
3

Bangyan He, Jian Liu, Yiming Li, Siyuan Liang, Jingzhi Li,
Xiaojun Jia, and Xiaochun Cao. Generating transferable 3d
adversarial point cloud via random perturbation factoriza-
tion. In AAAI, pages 764-772, 2023. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016. 3

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spatial
dimensions of vision transformers. In ICCV, pages 11936—
11945, 2021. 3

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, pages 4700-4708, 2017. 3

Qidong Huang, Xiaoyi Dong, Dongdong Chen, Hang Zhou,
Weiming Zhang, Kui Zhang, Gang Hua, Yueqiang Cheng,
and Nenghai Yu. Pointcat: Contrastive adversarial training
for robust point cloud recognition. /EEE TIP, 33:2183-2196,
2024. 3,4

[16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. NeurlIPS, 31, 2018. 4

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and
John E Hopcroft. Nesterov accelerated gradient and scale
invariance for adversarial attacks. In /CLR, 2020. 3

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and
John E Hopcroft. Nesterov accelerated gradient and scale
invariance for adversarial attacks. In /CLR, 2020. 3
Qinliang Lin, Cheng Luo, Zenghao Niu, Xilin He, We-
icheng Xie, Yuanbo Hou, Linlin Shen, and Siyang Song.
Boosting adversarial transferability across model genus by
deformation-constrained warping. In AAAI, pages 3459-
3467,2024. 4,5, 6

Binbin Liu, Jinlai Zhang, and Jihong Zhu. Boosting 3d ad-
versarial attacks with attacking on frequency. IEEE Access,
10:50974-50984, 2022. 3

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, pages 8895-8904, 2019. 4

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012-10022, 2021. 3

Tianrui Lou, Xiaojun Jia, Jindong Gu, Li Liu, Siyuan Liang,
Bangyan He, and Xiaochun Cao. Hide in thicket: Gener-
ating imperceptible and rational adversarial perturbations on
3d point clouds. In CVPR, pages 24326-24335, 2024. 3

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework, 2022. 3, 4

AAM Muzahid, Wanggen Wan, Ferdous Sohel, Lianyao Wu,
and Li Hou. Curvenet: Curvature-based multitask learning
deep networks for 3d object recognition. IEEE/CAA Journal
of Automatica Sinica, 8(6):1177-1187, 2020. 3, 4

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652-660, 2017. 2, 3, 4
Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NeurIPS, 30, 2017. 3,4

Zeyu Qin, Yanbo Fan, Yi Liu, Li Shen, Yong Zhang,
Jue Wang, and Baoyuan Wu. Boosting the transferability
of adversarial attacks with reverse adversarial perturbation.
NeurIPS, 35:29845-29858, 2022. 3,4, 5,6

Chunlin Qiu, Yiheng Duan, Lingchen Zhao, and Qian Wang.
Enhancing adversarial transferability through neighborhood
conditional sampling, 2024. 4, 5, 6

Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin.
Robust adversarial objects against deep learning models. In
AAAI pages 954-962, 2020. 3

Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen
Wang. Boosting adversarial transferability by block shuf-
fle and rotation. In CVPR, pages 24336-24346, 2024. 4, 5,
6

Xiaosen Wang and Kun He. Enhancing the transferability of
adversarial attacks through variance tuning. In CVPR, pages
1924-1933, 2021. 3,4, 5,6


https://github.com/Pointcept/Pointcept
https://github.com/Pointcept/Pointcept

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

Xiaosen Wang, Jiadong Lin, Han Hu, Jingdong Wang, and
Kun He. Boosting adversarial transferability through en-
hanced momentum, 2021. 3

Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen
Wang, and Quanshi Zhang. A unified approach to interpret-
ing and boosting adversarial transferability. In /CLR, 2021.
3

Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. Struc-
ture invariant transformation for better adversarial transfer-
ability. In ICCV, pages 46074619, 2023. 4, 5, 6

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM TOG, 38(5):
1-12, 2019. 3,4

Yuxin Wen, Jiehong Lin, Ke Chen, CL Philip Chen, and Kui
Jia. Geometry-aware generation of adversarial point clouds.
IEEE TPAMI, 44(6):2984-2999, 2020. 3

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, pages
9621-9630, 2019. 3,4

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. NeurIPS, 35:33330-33342,
2022. 4

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, pages 1912-1920, 2015. 2

Ziyi Wu, Yueqi Duan, He Wang, Qingnan Fan, and
Leonidas J. Guibas. If-defense: 3d adversarial point cloud
defense via implicit function based restoration, 2021. 3
Chong Xiang, Charles R Qi, and Bo Li. Generating 3d ad-
versarial point clouds. In CVPR, pages 9136-9144, 2019.
3

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, pages 1492-1500, 2017. 3
Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hong-
sheng Li, and Jianbo Shi. Starting from non-parametric net-
works for 3d point cloud analysis. In CVPR, pages 5344—
5353, 2023. 4

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In /CCV, pages 16259—
16268, 2021. 3, 4

Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang,
Wenbo Zhou, and Nenghai Yu. Dup-net: Denoiser and up-
sampler network for 3d adversarial point clouds defense. In
ICCV, pages 1961-1970, 2019. 3



	. Details about OPS
	. Proofs Omitted in the Methodology Section
	. Discussion: OPS vs. IT-Based Methods
	. Details about the Basic Operator Set

	. 3D Transfer Attack Benchmark
	. Threat Model
	. Dataset Setting
	. Model Setting
	. Attacker and Defenser

	. More experimental results
	. Experiments on Vision-Language Models
	. Experiments on Different Surrogate Models


