
Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera

Supplementary Material

O
rig

in
al

 Im
ag

e
Ze

ro
-P

itc
h 

ER
P

Pi
tc

h-
Aw

ar
e 

ER
P

Figure 7. Pitch-Aware Image-to-ERP Conversion. Top: The
original images, taking HM3D [35] samples for examples. Middle:
ERP patches converted from the original images without camera
pitch awareness by setting tangent image center at latitude �c =
0. Bottom: ERP patches prepared via camera pitch-aware ERP
conversion, where in our convention �c = �Pitch.

7. Supplemental Experiments

7.1. Full Zero-Shot Metric Depth Experiments

Full experiments with a few additional experiments comparing
DAC to the state-of-the-arts in zero-short metric depth estimation
are shown in Table 5. The additional experiments include:

• Zero-Shot to Perspective Data. In addition to the large FoV
dataset results presented in the main text, we include evalua-
tions on two widely tested perspective datasets, NYUv2 [30] and
KITTI [12], to demonstrate that our method can also achieve
zero-shot generalization on standard perspective datasets. No-
tably, DAC outperforms iDisc [32] trained with the Met-
ric3Dv2 [20] pipeline, which we attribute to DAC’s ability to
leverage the synergy of diverse data with varying FoVs and pitch
coverage. The remaining gap compared to the state-of-the-art is
likely due to the significantly smaller training dataset and the
smaller SwinL [28] backbone used in DAC compared to the
larger ViT-L [7] backbones adopted by other methods.

• DAC with SwinL [28] Backbone. We also update our DAC
model and iDisc model with a larger backbone, Swin-L [28],
to further showcase the performance of our approach when
scaling to larger models. Note that the Swin-L backbone re-
mains smaller than the Dinov2-ViT-L [31] backbone used in
Metric3Dv2 [20], and as well the ViT-L [7] backbone applied
in UniDepth [33]. As observed, although Swin-L-based DAC
models lead to significant improvements on generalization to
NYU and KITTI360 datasets, their improvements on Scan-
net++ and KITTI datasets are marginal, and they under per-
form Resnet101 counterparts on 360� datasets. We interpreter
the reason is that transformer backbones are designed for scale-
invariance reasoning rather than for the scale-equivariance infer-
ence required in 3D tasks. More adapted design of transformer
architectures are demanding for further push the upper bound of

training of foundation depth models.

7.2. Full Modular Ablation Study

Table 6 presents the complete experimental results for the ablation
study of DAC’s key components: pitch-aware ERP conversion

and pitch augmentation, FoV-Align, and Multi-Reso Training.
It also includes comparisons to alternative network architectures
and training frameworks. All the methods presented in this table
are training on HM3D-tiny [35] including about 300K samples.
iDisc [32]-based and DAC models are all based on Resnet101 [18]
backbone, and trained with 40K iterations with batch size 48.
While Metric3Dv2 [20] model is based on its original Dinov2-ViT-
L [31] backbone, trained on the same dataset with 120K iterations
and batch size 48.

The pitch-aware ERP conversion and ERP-space pitch

augmentation ablations, highlight the effectiveness of our core
Image-to-ERP conversion in enabling the DAC framework. As
shown in Table 6, pitch-aware ERP conversion plays a pivotal role
in generalizing perspective-trained models to large FoV datasets.
This capability stems from projecting input images to different lat-
itude regions of the ERP space—areas typically visible only in
large FoV data—illustrated in Fig. 7. By leveraging this approach,
the wide pitch angle variance in datasets like HM3D [35] becomes
a strength rather than a challenge.

Note that the camera orientations wrt. the world coordinates
can be either provided by the dataset [35, 39, 61], or estimated
from tradition geometry [40] or recent deep learning models [22].
Since our training process is usually integrated with ERP space ge-
ometric augmentations, our framework do not require the camera
pose estimation very accurate for the purpose of depth estimation.

Additionally, ERP-space pitch augmentation provides marginal
improvements for 360� datasets and minimal gains for Scannet++
fisheye data, likely because HM3D-tiny already includes a suffi-
ciently broad pitch span.

7.3. Full Ablation Study on Training Dataset

In Table 7, we show the full ablation study on the impact of differ-
ent datasets. Different training dataset, due to its different span in
camera FoVs, pitch angles, image quality, etc., contribute differ-
ently on different testing data. Our DAC framework can leverage
the synergy between very diverse datasets to significantly boost
the overall performance to all the testing datasets.

In addition to the main content summarized in the paper,we
include an ablation study on the impact of pitch-aware ERP con-

version and ERP-space pitch augmentation to evaluate their ef-
fectiveness across different training datasets.

The results indicate that pitch-aware ERP conversion is crucial
for DAC’s generalization across almost all configurations of train-
ing and testing datasets. This remains true even when the training
dataset has a limited range of camera pitch angles, such as Taskon-
omy [61]. Moreover, its impact becomes more pronounced as the
diversity of pitch angles in the training dataset increases. In con-
trast, ERP-space pitch augmentation proves significant primarily



Table 5. Zero-Shot Metric Depth Evaluation on 360�
, Fisheye, and Perspective Datasets. This table compares DAC with leading

state-of-the-art metric depth models across metric depth benchmarks, upon Resnet101 [18] and SwinL [28] backbones.

Test Dataset Methods Train Dataset Backbone �1�1�1 " �2�2�2 " �3�3�3 " Abs Rel# RMSE# log10#

Matterport3D [5]

UniDepth [33] Mix 3M ViT-L [7] 0.2576 0.5114 0.7091 0.7648 1.3827 0.2208
Metric3Dv2 [20] Mix 16M Dinov2-ViT-L [31] 0.4381 0.7311 0.8735 0.2924 0.8842 0.1546
Metric3Dv2 [20] Indoor 670K Dinov2-ViT-L [31] 0.4287 0.7854 0.9333 0.2788 0.8961 0.1352
iDisc [32] Indoor 670K Resnet101 [18] 0.5287 0.8260 0.9398 0.2757 0.7771 0.1147
iDisc [32] Indoor 670K SwinL [28] 0.5865 0.8722 0.9599 0.2272 0.6612 0.1021
DAC (Ours) Indoor 670K Resnet101 [18] 0.7727 0.9562 0.9822 0.156 0.6185 0.0707

DAC (Ours) Indoor 670K SwinL [28] 0.7231 0.949 0.9866 0.1789 0.5911 0.0741

Pano3D-GV2 [2]

UniDepth [33] Mix 3M ViT-L [7] 0.2469 0.4977 0.7084 0.7892 1.2681 0.2231
Metric3Dv2 [20] 16M Dinov2-ViT-L [31] 0.4040 0.6929 0.8499 0.3070 0.8549 0.1664
Metric3Dv2 [20] Indoor 670K Dinov2-ViT-L [31] 0.5060 0.8176 0.9360 0.2608 0.7248 0.1201
iDisc [32] Indoor 670K Resnet101 [18] 0.5629 0.8222 0.9332 0.2657 0.6446 0.1122
iDisc [32] Indoor 670K SwinL [28] 0.6022 0.8528 0.9447 0.2272 0.5680 0.1035
DAC (Ours) Indoor 670K Resnet101 [18] 0.8115 0.9549 0.9860 0.1387 0.4780 0.0623

DAC (Ours) Indoor 670K SwinL [28] 0.7287 0.9307 0.9793 0.1836 0.4833 0.077

ScanNet++ [56]

UniDepth [33] Mix 3M ViT-L [7] 0.3638 0.6461 0.8358 0.4971 1.1659 0.1648
Metric3Dv2 [20] Mix 16M Dinov2-ViT-L [31] 0.5360 0.8218 0.9350 0.2229 0.8950 0.1177
Metric3Dv2 [20] Indoor 670K Dinov2-ViT-L [31] 0.6489 0.8920 0.9558 0.1915 0.9779 0.0938
iDisc [32] Indoor 670K Resnet101 [18] 0.6150 0.8780 0.9617 0.2712 0.4835 0.0972
iDisc [32] Indoor 670K Swinl [28] 0.7746 0.9439 0.9862 0.1741 0.3634 0.0680
DAC (Ours) Indoor 670K Resnet101 [18] 0.8517 0.9693 0.9922 0.1323 0.3086 0.0532
DAC (Ours) Indoor 670K SwinL [28] 0.8544 0.9776 0.9939 0.1282 0.2866 0.0518

KITTI360 [27]

UniDepth [33] Mix 3M ViT-L [7] 0.4810 0.8397 0.9406 0.2939 6.5642 0.1221
Metric3Dv2 [20] Mix 16M Dinov2-ViT-L [31] 0.7159 0.9323 0.9771 0.1997 4.5769 0.0811
Metric3Dv2 [20] Outdoor 130K Dinov2-ViT-L [31] 0.7675 0.9370 0.9756 0.1521 4.6610 0.0723
iDisc [32] Outdoor 130K Resnet101 [18] 0.7833 0.9384 0.9753 0.1598 4.9122 0.0704
iDisc [32] Outdoor 130K SwinL [28] 0.8165 0.9533 0.9829 0.1500 4.2549 0.0620
DAC (Ours) Outdoor 130K Resnet101 [18] 0.7858 0.9388 0.9775 0.1559 4.3614 0.0684
DAC (Ours) Outdoor 130K SwinL [28] 0.8222 0.9571 0.9845 0.1487 3.7510 0.0607

NYUv2 [30]

UniDepth [33] Mix 3M ViT-L [7] 0.9875 0.9982 0.9995 0.052 0.1936 0.0223

Metric3Dv2 [20] Mix 16M Dinov2-ViT-L [31] 0.9718 0.9929 0.9971 0.0666 0.2621 0.0290
Metric3Dv2 [20] Indoor 670K Dinov2-ViT-L [31] 0.9422 0.9885 0.9966 0.0936 0.3359 0.0388
iDisc [32] Indoor 670K Resnet101 [18] 0.691 0.9028 0.9675 0.1755 0.6193 0.0838
iDisc [32] Indoor 670K SwinL [28] 0.8319 0.9629 0.9891 0.1239 0.4690 0.0571
DAC (Ours) Indoor 670K Resnet101 [18] 0.719 0.9324 0.985 0.1641 0.6189 0.0755
DAC (Ours) Indoor 670K SwinL [28] 0.8673 0.975 0.9921 0.1187 0.4471 0.0511

KITTI [12]

UniDepth [33] Mix 3M ViT-L [7] 0.9643 0.9973 0.9993 0.1159 2.7881 0.047
Metric3Dv2 [20] Mix 16M Dinov2-ViT-L [31] 0.9742 0.9954 0.9987 0.0534 2.4932 0.0234

Metric3Dv2 [20] Outdoor 130K Dinov2-ViT-L [31] 0.9488 0.9918 0.9975 0.0848 3.1426 0.0375
iDisc [32] Outdoor 130K Resnet101 [18] 0.8503 0.9626 0.9897 0.1277 4.5347 0.0528
iDisc [32] Outdoor 130K SwinL [28] 0.8382 0.9682 0.993 0.1439 4.5267 0.0575
DAC (Ours) Outdoor 130K Resnet101 [18] 0.8767 0.9744 0.9934 0.1155 4.3877 0.0488
DAC (Ours) Outdoor 130K SwinL [28] 0.8912 0.9785 0.9947 0.1058 4.1699 0.0435

when the original training dataset lacks diversity in pitch angles.
However, its contribution diminishes when the training data al-
ready encompass a wide range of pitch angles.

7.4. Zero-Shot Test of Perspective Depth Model on

Distorted Images

As shown in Table 8, we evaluate Metric3D [20] on different rep-
resentations of KITTI360’s fisheye images including raw fisheye,
the ERP conversion of fisheye, undistorted fisheye with three dif-
ferent FoVs. The evaluation results align with the visual examples
in Figure 2, demonstrating that perspective-trained metric depth
models perform poorly on fisheye data. While undistorted camera
representations sacrifice significant FoV or severs interpolating ar-
tifacts, applying a virtual focal length 1

fvirtual
= tan

⇣
⇡

Herp

⌘
to raw

fisheye images or their ERP conversions results in even greater

performance degradation. To ensure a fair comparison between
DAC and pre-trained perspective models, we apply ERP conver-
sion during fisheye testing for the perspective models as well,
given that neither representation—raw fisheye nor ERP—falls
within their original camera domain.

8. On Applying Camera Distortion Models

As described in Sec. 4.1, the conversion between actual image and
the ERP can seamlessly handle different distortion models. In this
section, we illustrate how we apply to two typical fisheye models:
KB (OpenCV Fisheye) model [23] and MEI model [29].



Table 6. Impact of Key Components and Network. We conduct the main ablation study on indoor datasets by training with HM3D [35]
and performing zero-shot testing on Pano3D-GV2 [2] and ScanNet++[56]. We compare the performance of the DAC framework with
specific components removed, as well as different network architectures trained under the Metric3D[57] pipeline. Four key components of
our DAC framework are included in the ablation study.

Test Datasets Methods �1�1�1 " �2�2�2 " �3�3�3 " Abs Rel# RMSE# log10#

Matterport3D [5]

Metric3Dv2 [20] 0.4879 0.8196 0.9443 0.2631 0.8556 0.1214
iDisc-cnn [32] 0.3574 0.6355 0.8051 0.3202 1.3369 0.1854
iDisc [32] 0.4303 0.7325 0.8777 0.3109 1.1876 0.1508
DAC (Ours) 0.728 0.9372 0.9761 0.1699 0.718 0.0774

w\o Pitch-Aware ERP 0.5394 0.8358 0.9442 0.2222 0.8383 0.1134
w\o Pitch Aug 10� 0.7152 0.9379 0.9797 0.1816 0.7134 0.0789
w\o FoV Align 0.4494 0.7962 0.9206 0.2446 1.0383 0.1331
w\o Multi-Reso 0.5670 0.8476 0.9343 0.2219 0.9658 0.1132

Pano3D-GV2 [2]

Metric3Dv2 [20] 0.5623 0.8341 0.9396 0.2479 0.7332 0.1113
iDisc-cnn [32] 0.3026 0.5565 0.7337 0.3548 1.2307 0.2118
iDisc [32] 0.413 0.6844 0.8397 0.3043 1.0649 0.162
DAC (Ours) 0.7251 0.9254 0.9747 0.1729 0.6015 0.0786

w\o Pitch-Aware ERP 0.4911 0.7904 0.9193 0.2422 0.7521 0.1262
w\o Pitch Aug 10� 0.6912 0.9311 0.977 0.188 0.5966 0.0819
w\o FoV Align 0.4075 0.7585 0.9085 0.261 0.9148 0.1415
w\o Multi-Reso 0.5128 0.7784 0.8977 0.2437 0.8867 0.1298

ScanNet++ [56]

Metric3Dv2 [20] 0.3865 0.6730 0.8229 0.3129 1.3277 0.1705
iDisc-cnn [32] 0.4639 0.7653 0.8965 0.3045 1.3116 0.1395
iDisc [32] 0.5301 0.8048 0.9165 0.3237 1.552 0.1251
DAC (Ours) 0.6539 0.9083 0.9722 0.1951 0.5926 0.089

w\o Pitch-Aware ERP 0.4711 0.8068 0.9282 0.2508 0.7925 0.127
w\o Pitch Aug 10� 0.6741 0.9066 0.9701 0.1914 0.5966 0.0861
w\o FoV Align 0.5428 0.8644 0.9544 0.22 0.71 0.1091
w\o Multi-Reso 0.5504 0.8464 0.942 0.2231 0.7435 0.1116

8.1. KB Model

KB model typically includes distortion parameters k1, k2, k3, k4.
Applying KB model to our Eq. 4 can start from mapping our defi-
nition in Eq. 1 and Eq. 2 to the original KB model notations to get:

a = xt, b = yt (7)

r =
q

x2
t
+ y2

t
(8)

✓ = arctan(r) = c (9)

However, the direct use of (xt, yt) can face numerical issue when
the FOV is near 180�, when the dividing of cos c approaches 0 in
computing them. A more numerical stable version supporting KB
at 180� is to use the numerators in Eq. 1 and Eq. 2, denoted as
(x̄, ȳ). Then we can rewrite:

a = x̄, b = ȳ (10)

r =
p

x̄2 + ȳ2 (11)
✓ = c (12)

where we can keep the ratios a

r
, a

r
consistent between two ap-

proaches, while avoiding numeric issues caused by dividing cos 0.
The remaining process is exactly the same as the original KB

model. Fisheye distortion is applied as:

✓d = ✓(1 + k1✓
2 + k2✓

4 + k3✓
6 + k4✓

8) (13)

The distorted point coordinates are [x0, y0] where

xd =

✓
✓d
r

◆
a (14)

yd =

✓
✓d
r

◆
b (15)

Finally, given a intrinsic model including fx, fy, cx, cy,↵ as pa-
rameters, the conversion into pixel coordinates [u, v] can be writ-
ten as:

u = fx(xd + ↵yd) + cx (16)
v = fyyd + cy (17)

8.2. MEI Model

MEI model is general more complex by including parameters
⇠, k1, k2, p1, p2, where an additional shift parameter ⇠ is applied
so that the model handle even larger FOV camera, and p1, p2 are
including tangential distortion.

Mapping our definitions to MEI model is even simpler. Note
that (x̄, ȳ, cos c) actually describe a point lying on the unit sphere,
equalizing the Cartesian coordinates converted from the spherical
coordinates. The projection coordinates (pu, pv) are computed as:

pu =
x̄

cos c+ ⇠
(18)

pv =
ȳ

cos c+ ⇠
(19)



Table 7. Ablation Study of training datasets. Models are trained separately on each training dataset and evaluated in zero-shot tests on
360� and fisheye datasets. In addition, the ablation study on the impact of pitch-aware ERP conversion and ERP-space pitch augmentation
are included to further analysis their contribution under different training distributions.

Test Datasets Train Dataset Methods �1�1�1 " �2�2�2 " �3�3�3 " Abs Rel# RMSE# log10#

Matterport3D [5]

HM3D-tiny [35] 310K

Metric3Dv2 [20] 0.4879 0.8196 0.9443 0.2631 0.8556 0.1214
iDisc [32] 0.4303 0.7325 0.8777 0.3109 1.1876 0.1508
DAC (Ours) 0.728 0.9372 0.9761 0.1699 0.718 0.0774

w\o Pitch-Aware ERP 0.5394 0.8358 0.9442 0.2222 0.8383 0.1134
w\o Pitch Aug 10� 0.7152 0.9379 0.9797 0.1816 0.7134 0.0789

Taskonomy-tiny [61] 300K

Metric3Dv2 [20] 0.3244 0.6652 0.8958 0.3145 1.0727 0.1711
iDisc [32] 0.3662 0.6538 0.8205 0.4186 2.3299 0.1787
DAC (Ours) 0.5363 0.8537 0.9371 0.232 0.8194 0.115

w\o Pitch-Aware ERP 0.4018 0.7576 0.894 0.2722 0.9377 0.1471
w\o Pitch Aug 10� 0.4244 0.7633 0.9019 0.2689 0.9199 0.1428

Hypersim [39] 60k

Metric3Dv2 [20] 0.3740 0.6746 0.8450 0.5082 1.0822 0.1637
iDisc [32] 0.3624 0.6792 0.8757 0.315 1.0425 0.1638
DAC (Ours) 0.4491 0.8066 0.9438 0.2659 0.8574 0.1271

w\o Pitch-Aware ERP 0.4098 0.7526 0.9129 0.2772 0.9437 0.1431
w\o Pitch Aug 10� 0.4577 0.834 0.9524 0.2513 0.8926 0.1206

Pano3D-GV2 [2]

HM3D-tiny [35] 310K

Metric3Dv2 [20] 0.5623 0.8341 0.9396 0.2479 0.7332 0.1113
iDisc [32] 0.413 0.6844 0.8397 0.3043 1.0649 0.162
DAC (Ours) 0.7251 0.9254 0.9747 0.1729 0.6015 0.0786

w\o Pitch-Aware ERP 0.4911 0.7904 0.9193 0.2422 0.7521 0.1262
w\o Pitch Aug 10� 0.6912 0.9311 0.977 0.188 0.5966 0.0819

Taskonomy-tiny [61] 300K

Metric3Dv2 [20] 0.3785 0.7489 0.9062 0.2959 0.8945 0.1550
iDisc [32] 0.3888 0.6816 0.8349 0.4076 2.1877 0.1683
DAC (Ours) 0.6411 0.8719 0.9452 0.1972 0.6148 0.0982

w\o Pitch-Aware ERP 0.4828 0.7882 0.9026 0.2465 0.7345 0.1323
w\o Pitch Aug 10� 0.4954 0.7947 0.9077 0.2411 0.7197 0.1289

Hypersim [39] 60k

Metric3Dv2 [20] 0.3085 0.6382 0.8147 0.5583 1.1762 0.1887
iDisc [32] 0.3372 0.6473 0.831 0.3288 0.9098 0.177
DAC (Ours) 0.5208 0.8295 0.9424 0.1792 0.6873 0.1158

w\o Pitch-Aware ERP 0.4486 0.7655 0.9025 0.2707 0.7823 0.1385
w\o Pitch Aug 10� 0.5293 0.8525 0.9504 0.2344 0.7212 0.1123

ScanNet++ [56]

HM3D-tiny [35] 310K

Metric3Dv2 [20] 0.3799 0.6310 0.7801 0.6090 1.0490 0.1899
iDisc [32] 0.5301 0.8048 0.9165 0.3237 1.552 0.1251
DAC (Ours) 0.6539 0.9083 0.9722 0.1951 0.5926 0.089

w\o Pitch-Aware ERP 0.4711 0.8068 0.9282 0.2508 0.7925 0.127
w\o Pitch Aug 10� 0.6741 0.9066 0.9701 0.1914 0.5966 0.0861

Taskonomy-tiny [61] 300K

Metric3Dv2 [20] 0.6421 0.8377 0.9285 0.3840 2.2102 0.1075
iDisc [32] 0.6743 0.9179 0.9809 0.1977 0.5235 0.083
DAC (Ours) 0.7981 0.9666 0.9898 0.1447 0.3556 0.0637

w\o Pitch-Aware ERP 0.7642 0.9561 0.9879 0.1542 0.3881 0.0705
w\o Pitch Aug 10� 0.7673 0.9534 0.9892 0.1516 0.3861 0.0694

Hypersim [39] 60k

Metric3Dv2 [20] 0.5684 0.8149 0.9173 0.3364 0.5289 0.1192
iDisc [32] 0.6656 0.9004 0.9701 0.2213 0.5471 0.0872
DAC (Ours) 0.7478 0.9483 0.9871 0.1762 0.4124 0.0729

w\o Pitch-Aware ERP 0.7238 0.9236 0.9801 0.1959 0.4375 0.0778
w\o Pitch Aug 10� 0.7439 0.9396 0.9844 0.1846 0.4106 0.0732

The distortion is then applied as:

⇢2 = p2u + p2v (20)

pu  pu · (1 + k1⇢
2 + k2⇢

4) (21)

pv  pv · (1 + k1⇢
2 + k2⇢

4) (22)

Tangential distortion is further applied as:

xd  pu + 2p1pupv + p2(⇢
2 + 2p2u) (23)

yd  pv + p1(⇢
2 + 2p2v) + 2p2pupv (24)

The later projection is applied the same way as KB model.



Table 8. Pretrained model performance on various representations of KITTI 360 dataset [27]

Representation Methods Train Dataset �1�1�1 " �2�2�2 " �3�3�3 " Abs Rel# RMSE# log10#

KITTI 360 Raw (FOV 180) Metric3Dv2 [20] Mix 16M 0.7421 0.9498 0.9829 0.1679 3.0873 0.0739
Metric3Dv2 [20] Outdoor 130K 0.6400 0.9077 0.9763 0.1884 3.5698 0.0902

KITTI 360 ERP (FOV 180) Metric3Dv2 [20] Mix 16M 0.7159 0.9323 0.9770 0.1997 4.5769 0.0811
Metric3Dv2 [20] Outdoor 130K 0.7675 0.9370 0.9756 0.1521 4.6610 0.0723

KITTI 360 UD FoV 90 Metric3Dv2 [20] Mix 16M 0.7581 0.9533 0.9738 0.1652 2.1454 0.0799
Metric3Dv2 [20] Outdoor 130K 0.8099 0.9582 0.9807 0.1469 2.1203 0.0650

KITTI 360 UD FoV 120 Metric3Dv2 [20] Mix 16M 0.6398 0.9285 0.9717 0.1929 2.3375 0.0968
Metric3Dv2 [20] Outdoor 130K 0.6635 0.9019 0.9685 0.1865 2.5982 0.0929

KITTI 360 UD FoV 150 Metric3Dv2 [20] Mix 16M 0.4840 0.8533 0.9551 0.2311 2.8692 0.1210
Metric3Dv2 [20] Outdoor 130K 0.4565 0.7788 0.9041 0.2498 3.2509 0.1355

9. Efficient Up-Projection from Distorted

Cameras via Lookup Table Approximation

Up-projection is a crucial step to convert predicted depth maps
into 3D point clouds. For perspective or ERP images, this process
is straightforward, as the 3D ray associated with each pixel can
be computed in closed form. However, up-projection from fisheye
depth maps poses challenges due to the need to invert the distor-
tion model, often requiring the solution of a high-order polynomial
equation for each pixel based on the distortion parameters. This
process is computationally expensive and impractical for real-time
applications.

Fortunately, pre-computed lookup tables can address this issue
efficiently. These tables store a mapping from 2D image coordi-
nates to 3D ray directions, allowing for real-time up-projection,
which can be written as:

L : R2 ! R3, L(u) = r, (25)

where L represents the lookup table, u = (u, v) 2 R2 denotes
the 2D image coordinates, and r = (x, y, z) 2 R3 represents
the corresponding 3D ray direction. The lookup tables can be
generated using tools like OpenCV with gradient-based numerical
methods or through simpler grid search approaches when tangen-
tial distortion parameters are negligible [27]. in this work, we use
similar grid search approach to computed lookup tables for Scan-
net++ [56] based on their provided distortion and intrinsic param-
eters.

Notably, our DAC framework does not require approximated
solutions for up-projection. In DAC, fisheye images are converted
into ERP patches, which rely only on the forward distortion model.
The resulting ERP depth maps can then be up-projected into 3D
point clouds using each ERP coordinate’s ray direction in a unit
sphere, eliminating efficiency concerns. This represents a minor
but valuable benefit of our approach.

Nevertheless, we identify two practical use cases for lookup
tables in other contexts:
• Visualization Purposes: Lookup tables efficiently map ERP

patches and predicted ERP depth maps back to the original fish-
eye space for visualization, as illustrated in Fig. 6. Specifically,
ERP-to-image conversion for a fisheye image can also be per-
formed efficiently using grid sampling, where each fisheye im-
age coordinate is mapped to its floating-point location in the
ERP space. The output of Eq. 25 already provides tangent plane

normalized coordinates, xt = x

z
and yt =

y

z
. Using the inverse

of Gnomonic Geometry [47], the mapping to spherical coordi-
nates (�,�) is derived as follows:

� = sin�1

✓
cos c sin�c +

yt sin c cos�c

⇢

◆
(26)

� = �c + tan�1

✓
xt sin c

⇢ cos�c cos c� yt sin�c sin c

◆
(27)

where

⇢ =
q

x2
t
+ y2

t

c = tan�1 ⇢

However, this step is only needed for visualization purpose, not
required for downstream tasks where up-projected 3D points are
the most demanding.

• Converting Z-Values to Euclidean Distances: For datasets like
ScanNet++ [56], ground-truth depth maps recorded in Z-values
must be converted to Euclidean distances for evaluation or in-
clusion in DAC training. This can be achieved efficiently using
pre-computed ray directions from the fisheye’s original incom-
ing rays (not distorted by intrinsic parameters). The Euclidean
distance for each pixel is calculated as: DEuclid = Z

z
, where Z

represents the ground-truth Z-value, and z is the z-component
of the ray direction r.

10. Additional Visual Results

In this section, we provide three additional set of visual com-
parisons of the competing methods on each large-FoV test set,
namely: Matterport3D [5], Pano3D-GV2 [2], Scannet++ [56], and
KITTI360 [27], as shown in Fig. 8, 9, 10. Compared to Fig. 6,
visual results of Unidepth [33] are also included for comparison.

Through visual comparisons, our DAC framework demon-
strates sharper boundaries in the depth maps and more visually
consistent scale in the depth visualization results. As seen in the
A.Rel maps wrt. the ground-truth depth, our framework exhibits a
significant advantage over each previous state-of-the-art method.



Figure 8. Zero-Shot Qualitative Results. For each dataset, an example is presented in two consecutive rows. The left column shows the
original image and Ground-Truth depth map, followed by results from various methods. For each method, the top row displays the A.Rel
map # and the bottom row shows the predicted depth map. The color range for depth and A.Rel maps is indicated in the last column.



Figure 9. Zero-Shot Qualitative Results. For each dataset, an example is presented in two consecutive rows. The left column shows the
original image and Ground-Truth depth map, followed by results from various methods. For each method, the top row displays the A.Rel
map # and the bottom row shows the predicted depth map. The color range for depth and A.Rel maps is indicated in the last column.



Figure 10. Zero-Shot Qualitative Results. For each dataset, an example is presented in two consecutive rows. The left column shows the
original image and Ground-Truth depth map, followed by results from various methods. For each method, the top row displays the A.Rel
map # and the bottom row shows the predicted depth map. The color range for depth and A.Rel maps is indicated in the last column.


