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A. Additional Related Work
Here, we discussed general methods for unsupervised
anomlay detection. Epistemic methods are based on the
assumption that the networks respond differently during
inference between seen input and unseen input. Within
this paradigm, pixel reconstruction methods assume that
the networks trained on normal images can reconstruct
anomaly-free regions well, but poorly for anomalous re-
gions. Auto-encoder (AE) [2, 63], variational auto-encoder
(VAE) [9, 32], or generative adversarial network (GAN)
[1, 47] are used to restore normal pixels. However, pixel
reconstruction models may also succeed in restoring un-
seen anomalous regions if they resemble normal regions
in pixel values or the anomalies are barely noticeable
[10]. Therefore, feature reconstruction is proposed to con-
struct features of pre-trained encoders instead of raw pixels
[10, 58, 60]. To prevent the whole network from converg-
ing to a trivial solution, the parameters of the encoders are
frozen during training. In feature distillation [46, 55], the
student network is trained from scratch to mimic the output
features of the pre-trained teacher network with the same
input of normal images, also based on the similar hypothe-
sis that the student trained on normal samples only succeed
in mimicking features of normal regions.

Pseudo-anomaly methods generate handcrafted defects
on normal images to imitate anomalies, converting UAD
to supervised classification [29] or segmentation tasks
[62]. Specifically, CutPaste [29] simulates anomalous re-
gions by randomly pasting cropped patches of normal im-
ages. DRAEM [62] constructs abnormal regions using Per-
lin noise as the mask and another image as the additive
anomaly. DeTSeg [67] employs a similar anomaly gen-
eration strategy and combines it with feature reconstruc-
tion. SimpleNet [34] introduces anomaly by injecting Gaus-
sian noise in the pre-trained feature space. These methods
deeply rely on how well the pseudo anomalies match the
real anomalies, which makes it hard to generalize to differ-
ent datasets.

Feature statistics methods [8, 27, 45, 49] memorize all
normal features (or their modeled distribution) extracted
by networks pre-trained on large-scale datasets and match
them with test samples during inference. Since these meth-
ods require memorizing, processing, and matching nearly
all features from training samples, they are computationally
expensive in both training and inference, especially when
the training set is large.

Scope of Application. In this work, we focus on sensory

AD that detects regional or structural anomalies (common
in practical applications such as industrial inspection, med-
ical disease screening, etc.), which is distinguished from se-
mantic AD. In sensory AD, normal and anomalous samples
are the same objects except for anomaly, e.g. good cable vs.
spoiled cable. In semantic AD, the class of normal sam-
ples and anomalous samples are semantically different, e.g.
animals vs. vehicles. Semantic AD methods usually uti-
lize and compare the global representation of images, which
generally do not suffer from the issues of multi-class setting
discussed in this paper..

B. Full Implementation Details
ViT-Base/14 (patch size=14) pre-trained by DINOv2 with
registers (DINOv2-R) [7] is utilized as the encoder by de-
fault. The discard rate of Dropout in Noisy Bottleneck is 0.2
by default, which is increased to 0.4 for the diverse Real-
IAD. Loose constraint with 2 groups and Lglobal−hm loss
are used by default. The input image is first resized to 4482

and then center-cropped to 3922, so that the feature map
(282) is large enough for localization. As previously dis-
cussed, the middle 8 layers of 12-layer ViT-Base are used
for reconstruction and feeding the bottleneck. ViT-Small
also has 12 layers, which is the same. ViT-Large contains
24 layers; therefore, we use the [4,6,8,...18] layers (index
start from 0). The decoder always contains 8 layer.

StableAdamW optimizer [56] with AMSGrad [41] is
utilized with lr (learning rate)=2e-3, β=(0.9,0.999), wd
(weight decay)=1e-4 and eps=1e-10. The network is
trained for 10,000 iterations for MVTec-AD and VisA and
50,000 iterations for Real-IAD under MUAD setting. The
network is trained for 5,000 iterations on each class un-
der the class-separated UAD setting. The lr warms up
from 0 to 2e-3 in the first 100 iterations and cosine an-
neals to 2e-4 throughout the training. The discarding rate
in Equation 5 linearly rises from 0% to 90% in the first
1,000 iterations as warm-up (500 iters for class-separated
setting). The anomaly map is obtained by upsampling the
point-wise cosine distance between encoder and decoder
feature maps (averaging if more than one pair or group).
The mean of the top 1% pixels in an anomaly map is used
as the image anomaly score. All experiments are conducted
with random seed=1 with cuda deterministic for invariable
weight initialization and batch order. Codes are imple-
mented with Python 3.8 and PyTorch 1.12.0 cuda 11.3, and
run on NVIDIA GeForce RTX3090 GPUs (24GB).

Most results of compared MUAD SoTAs are directly



Table A1. Comparison between pre-trained ViT foundations, conducted on MVTec-AD (%). All models are ViT-Base. The patch size
of DINOv2 and DINOv2-R is 142; others are 162. R4482-C3922 represents first resizing images to 448×448, then center cropping to
392×392.

Pre-Train
Backbone Type Image

Size

Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

DeiT[50] Supervised R5122 -C4482 98.19 99.24 97.64 97.93 68.98 67.91 91.45
MAE[19] MIM R5122 -C4482 96.27 98.33 95.44 96.96 62.89 63.32 89.85
D-iGPT[44] MIM R5122 -C4482 98.75 99.24 97.70 98.30 65.77 66.16 92.34
MOCOv3[6] CL R5122 -C4482 98.47 99.42 97.36 98.52 70.99 69.41 92.83
DINO[4] CL R5122 -C4482 98.97 99.58 98.14 98.52 70.89 69.02 93.48
iBOT[69] CL+MIM R5122 -C4482 99.22 99.67 98.57 98.60 70.78 69.92 93.33
DINOv2[39] CL+MIM R4482 -C3922 99.55 99.81 99.13 98.26 68.35 68.79 94.83
DINOv2-R[7] CL+MIM R4482 -C3922 99.60 99.78 99.04 98.35 69.29 69.17 94.79

DeiT[50] Supervised R2562 -C2242 97.65 99.05 97.40 97.80 62.58 63.39 89.98
MAE[19] MIM R2562 -C2242 97.25 98.84 96.94 97.78 63.00 64.01 90.95
BEiTv2[40] MIM R2562 -C2242 97.70 99.11 97.39 97.61 59.79 62.53 90.10
D-iGPT[44] MIM R2562 -C2242 99.21 99.66 98.47 98.08 60.05 63.05 91.78
MOCOv3[6] CL R2562 -C2242 98.74 99.56 98.33 98.05 63.36 64.38 91.13
DINO[4] CL R2562 -C2242 99.20 99.72 98.77 98.16 64.16 65.07 92.02
iBOT[69] CL+MIM R2562 -C2242 99.31 99.74 98.77 98.25 64.01 65.37 91.68
DINOv2[39] CL+MIM R2562 -C2242 99.26 99.70 98.60 97.95 62.27 64.39 92.80
DINOv2-R[7] CL+MIM R2562 -C2242 99.34 99.73 99.03 98.09 63.04 64.48 92.59

Table A2. Ablations of input size, conducted on MVTec-AD (%). R4482-C3922 represents first resizing images to 448×448, then center
cropping to 392×392.

Image Size MACs
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

R5122 -C4482 136.4G 99.67 99.81 99.12 98.33 69.24 69.47 94.76
R4482 136.4G 99.59 99.77 99.19 98.57 68.09 68.58 95.60
R4482 -C3922† 104.7G 99.60 99.78 99.04 98.35 69.29 69.17 94.79
R3922 104.7G 99.48 99.74 99.04 98.47 67.02 67.86 95.34
R3842 -C3362 77.1G 99.61 99.78 99.22 98.27 67.22 67.77 94.24
R3362 77.1G 99.63 99.84 99.23 98.48 65.46 66.60 95.10
R3202 -C2802 53.7G 99.62 99.81 99.07 98.21 65.21 66.34 93.57
R2802 53.7G 99.46 99.75 99.27 98.40 63.28 64.79 94.47

drawn from a benchmark paper ADer [66]. We express
great thanks for their wonderful work.

C. Additional Ablation and Experiment

Pre-Trained Foundations. The representation quality of
the frozen backbone Transformer is of great significance
to unsupervised anomaly detection. We conduct exten-
sive experiments to probe the impact of different pre-
training methods, including supervised learning and self-
supervised learning. DeiT [50] is trained on ImageNet[11]
in a supervised manner by distilling CNNs. MAE [19],
BEiTv2 [40], and D-iGPT [44] are based on masked im-

age modeling (MIM). Given input images with masked
patches, MAE [19] is optimized to restore raw pixels;
BEiTv2 [40] is trained to predict the token index of VQ-
GAN and CLIP; D-iGPT [44] is trained to predict the fea-
tures of CLIP model. MOCOv3 [6] is based on contrastive
learning (CL), pulling the representations of the similar im-
ages and pushing those of different images. DINO [4] is
based on positive-pair contrastive learning, which is also
referred to as self-distillation. It trains the network to pro-
duce similar feature representations given two views (aug-
mentations) of the same image. iBot [69] and DINOv2 [39]
combine MIM and CL strategies, marking the SoTA of self-
supervised foundation models. DINOv2-R [7] is a variation



Table A3. Scaling of ViT architectures on VisA and Real-IAD (%). †: default.

Dateset Arch.
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

VisA [70]
ViT-Small 97.94 98.09 95.33 98.57 51.19 55.10 93.71
ViT-Base† 98.73 98.87 96.18 98.74 53.23 55.69 94.50
ViT-Large 98.85 99.09 96.12 99.10 55.68 57.33 94.76

Real-IAD [54]
ViT-Small 89.10 86.91 79.87 98.69 41.88 46.74 94.08
ViT-Base† 89.33 86.77 80.17 98.84 42.79 47.10 93.86
ViT-Large 90.07 87.57 80.90 99.02 44.29 48.36 94.37

Table A4. Ablations of Dinomaly elements on VisA (%). NB: Noisy Bottleneck. LA: Linear Attention. LC: Loosen Constraint (2 groups).
LL: Loosen Loss.

NB LA LC LL
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

95.81 96.35 92.06 97.97 47.88 52.55 93.43
✓ 97.38 97.74 94.07 97.84 50.42 54.57 93.71

✓ 95.74 96.23 91.87 98.01 47.89 52.58 93.34
✓ 96.39 97.01 92.54 97.37 46.80 51.66 92.75

✓ 96.93 97.26 93.32 98.37 49.52 53.59 94.11
✓ ✓ 97.52 97.75 94.33 98.06 51.49 55.09 93.75
✓ ✓ 98.06 98.37 95.18 98.21 51.43 54.89 93.94
✓ ✓ ✓ 98.57 98.77 95.75 98.57 52.29 55.38 94.28
✓ ✓ ✓ 98.22 98.43 95.27 98.51 53.11 55.48 94.24
✓ ✓ ✓ ✓ 98.73 98.87 96.18 98.74 53.23 55.69 94.50

of DINOv2 that employs 4 extra register tokens.
It is noted that most models are pre-trained with the im-

age resolution of 224 × 224, except that DINOv2 [39] and
DINOv2-R [7] have extra a high-resolution training phase
with 518× 518. Directly using the pre-trained weights on a
different resolution for UAD without fine-tuning like other
supervised tasks can cause generalization problems. There-
fore, by default, we still keep the feature size of all com-
pared models to 28 × 28, i.e., the input size is 392 × 392
for ViT-Base/14 and 448× 448 for ViT-Base/16. Addition-
ally, we train Dinomaly with the low-resolution input size
of 224× 224.

The results are presented in Table A1. Within Dino-
maly, nearly all foundation models can produce SoTA-level
results with image-level AUROC higher than 98%. Gen-
erally speaking, CL+MIM combined models outperform
MIM and CL models. In addition, most foundations do
not benefit from a higher resolution for image-level per-
formance but suffer from it, indicating the lack of gener-
alization on a input size different from pre-training; while
as expected, DINOv2 and DINOv2-R pre-trained on larger
inputs can better benefit from higher resolution in Dino-
maly. Because some methods, i.e., D-iGPT, DINO, and
iBOT, produce similar results to DINOv2 in 224× 224, we
expect that they also have the potential to be as powerful
in Dinomaly if they are pre-trained in high-resolution. Em-

ploying MAE produces the worst results. MAE was also
tested as the backbone of ViTAD[65], resulting in undesir-
able performances (I-AUROC=95.3), which was attributed
to the weak semantic expression caused by the pretraining
strategy. It is also noted that MAE is bad in other unsu-
pervised tasks such as ImageNet kNN; therefore, MAE is
considered to be less effective in tasks without finetuning.

Input Size. The patch size of ViTs (usually 14 × 14 or
16×16) is much larger than the stem layer’s down-sampling
rate of CNNs (usually 4 × 4), resulting in smaller feature
map size. For dense prediction tasks like semantic segmen-
tation, ViTs usually employ a large input image size [39].
This practice holds in anomaly localization as well. In Ta-
ble A2, we present the results of Dinomaly with different
input resolutions. Following PatchCore [45], by default, we
adopt center-crop preprocessing to reduce the influence of
background, which can also cause unreachable anomalies at
the edge of images. Experimental results demonstrate our
robustness to input size. While small image size is enough
for image-level anomaly detection, larger inputs are bene-
ficial to anomaly localization. All experiments evaluate lo-
calization performance in a unified size of 256 × 256 for
fairness.

Scalability on VisA and Real-IAD. We demonstrate the
performance of different ViT sizes on VisA and Real-IAD
in Table A3.



Table A5. Ablations of Dropout rates in Noisy Bottleneck, conducted on MVTec-AD (%). †: default.

Dropout rate
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

0 (noiseless) 99.19 99.55 98.51 97.55 63.11 64.39 93.33
0.1 99.54 99.75 98.90 98.35 69.46 69.19 94.53
0.2 † 99.60 99.78 99.04 98.35 69.29 69.17 94.79
0.3 99.65 99.83 99.16 98.34 68.46 68.81 94.63
0.4 99.64 99.80 99.23 98.22 67.95 68.33 94.57
0.5 99.56 99.81 99.14 98.15 67.43 67.82 94.64

Table A6. Ablations of reconstruction constraint, conduected on MVTec-AD (%). †: default.

Constraints
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

layer-to-layer (dense, every 1) 99.39 99.68 98.73 98.12 68.55 68.63 94.28
layer-to-layer (sparse, every 2) 99.52 99.73 98.95 98.16 68.89 68.57 94.40
layer-to-layer (sparse, every 4) 99.54 99.77 99.05 98.04 66.69 67.17 94.07
layer-to-cat-layer (every 2) 99.48 99.71 99.26 97.83 62.29 62.91 93.16
group-to-group (1 group) 99.64 99.80 99.36 98.18 64.79 65.40 93.96
group-to-group (2 groups)† 99.60 99.78 99.04 98.35 69.29 69.17 94.79

Table A7. Comparison between Convolutional block, Softmax Attention, and Linear Attention as the spatial mixer of decoder, conducted
on MVTec-AD (%).

Spatial Mixer
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

ConvBlock 3 × 3 99.45 99.63 98.64 98.05 65.35 68.07 94.17
ConvBlock 5 × 5 99.41 99.62 98.86 97.99 66.64 67.47 94.24
ConvBlock 7 × 7 99.42 99.65 98.86 98.01 67.57 67.94 94.45

Softmax Attention 99.52 99.73 98.92 98.20 68.25 68.34 94.17
Softmax Attention w/ Neighbour-Mask n = 1 99.51 99.71 98.90 98.17 67.86 67.92 94.27
Softmax Attention w/ Neighbour-Mask n = 3 99.56 99.76 99.05 98.28 69.26 68.17 94.50

Linear Attention 99.60 99.78 99.04 98.35 69.29 69.17 94.79
Linear Attention w/ Neighbour-Mask n = 1 99.60 99.78 99.04 98.32 68.77 68.72 94.75
Linear Attention w/ Neighbour-Mask n = 3 99.60 99.80 99.14 98.38 69.65 69.38 94.70

Ablations on VisA. Similar to Table 3 that conduct abla-
tion experiments on MVTec-AD, we additionally run them
on VisA for further validations. As shown in Table A4, pro-
posed components of Dinomaly contribute to the AD per-
formances on VisA as on MVTec-AD.

Noisy Rates. We conduct ablations on the discarding
rate of the Dropouts in MLP bottleneck, as shown in Ta-
ble A5. Experimental results demonstrate that Dinomaly is
robust to different levels of dropout rate.

Reconstruction Constraint. We quantitatively examine
different reconstruction schemes presented in Figure 4. As
shown in Table A6, group-to-group LC outperforms layer-
to-layer supervision. On image-level metrics, 1-group LC
with all layers added performs similarly to its 2-group coun-

terpart that separates low-level and high-level layers; how-
ever, 1-group LC mixes low-level and high-level features
which is harmful for anomaly localization. More ablations
on scalability, input size, pre-trained foundations, etc., are
presented in Appendix C.

Attention vs. Convolution. Previous works and this pa-
per have proposed to leverage attentions instead of convo-
lutions in UAD. Here, we conduct experiments substituting
the attention in the decoder of Dinomaly by convolutions
as the spatial mixers. Following MetaFormer [61], we em-
ploy Inverted Bottleneck block that consists of 1 × 1 conv,
GELU activation, N ×N deep-wise conv, and 1 × 1 conv,
sequentially. The results are shown in Table A7, where At-
tentions outperform Convolutions, especially for pixel-level



Table A8. Dropout vs. feature jitter, conducted on MVTec-AD (%).

Noise type
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

No Noise 99.19 99.55 98.51 97.55 63.11 64.39 93.33

Patch Masking p=0.1 99.27 99.60 98.80 97.92 67.15 66.90 94.18
Patch Masking p=0.2 99.17 99.56 98.59 97.75 66.55 66.32 94.11
Patch Masking p=0.3 99.11 99.54 98.37 97.53 65.48 65.96 93.84
Patch Masking p=0.4 99.20 99.59 98.53 97.71 65.58 66.36 94.15

Feature Jitter scale=1 99.23 99.54 98.48 97.58 63.22 64.31 93.55
Feature Jitter scale=5 99.24 99.57 98.55 97.84 65.28 65.81 93.75
Feature Jitter scale=10 99.46 99.73 99.12 98.19 67.59 67.80 94.19
Feature Jitter scale=20 99.59 99.79 99.04 98.23 67.93 68.21 94.40

Dropout p=0.1 99.54 99.75 98.90 98.35 69.46 69.19 94.53
Dropout p=0.2 99.60 99.78 99.04 98.35 69.29 69.17 94.79
Dropout p=0.3 99.65 99.83 99.16 98.34 68.46 68.81 94.63
Dropout p=0.4 99.64 99.80 99.23 98.22 67.95 68.33 94.57

Table A9. Integrating the essense of Noisy Bottleneck (NB) and Loose Loss (LL) on RD4AD, conducted on MVTec-AD (%). †: Repro-
duction in our framework; ReLU in ResNet decoder is replaced by GELU, StableAdamW optimizer is used.

Method NB LL
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

RD4AD† 97.8 99.1 97.2 96.4 58.0 59.3 91.9
RD4AD ✓ 98.4 99.4 97.9 97.2 58.6 60.4 92.9
RD4AD ✓ 98.2 99.2 97.5 96.8 60.0 61.1 92.7
RD4AD ✓ ✓ 98.5 99.4 97.8 97.2 59.6 61.2 93.0

Table A10. Scaling properties of a previous ViT-based method, ViTAD[65] on MVTec-AD. †: their original setting.

Method Pre-Train
Backbone

Input
Size

Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

ViTAD† DINO 2562 98.3 99.4 97.3 97.7 55.3 58.7 91.4
ViTAD MAE 2562 95.3 97.7 95.2 97.4 53.0 56.2 90.6
ViTAD DINOv2 2562 98.7 99.4 98.1 97.6 55.3 59.1 92.7
ViTAD DINOv2-R 2562 98.5 99.3 97.8 97.4 54.5 59.2 92.8

ViTAD† DINO 2562 98.3 99.4 97.3 97.7 55.3 58.7 91.4
ViTAD DINO 3202 98.3 99.2 97.1 97.6 61.3 63.3 92.4
ViTAD DINO 3842 97.8 98.9 96.3 97.5 62.5 63.7 92.4

anomaly localization. In addition, utilizing convolutions in
the decoder can still yield SoTA results, demonstrating the
universality of the proposed Dinomaly.

Neighbour-Masking. Prior method [60] proposed to
mask the keys and values in an n × n square centered at
each query, in order to alleviate identity mapping in Atten-
tion. This mechanism can also be applied to Linear Atten-
tion as well. As shown in Table A7, neighbor-masking can
further improve Dinomaly with both Softmax Attention and

Linear Attention moderately.

Noise Bottleneck. UniAD [60] proposed to perturb the
encoder features by Feature Jitter, i.e. adding Gaussian
noise with scale to control the noise magnitude. It is also
easy to borrow the masking strategy of MAE [19] to ran-
domly mask patch tokens before the decoder. We evaluate
the effectiveness of feature jitter and patch-masking in Di-
nomaly by placing it at the beginning of Noisy Bottleneck.
As shown in Table A8, both Dropout and Feature Jitter can



Table A11. Matching previous methods in computation consumption. Dinomaly can be easily scaled by model size and input size.

Method Params MACs
MVTec-AD [3] VisA [70]

I-AUROC P-AUROC P-AUPRO I-AUROC P-AUROC P-AUPRO

DiAD [18] 1331M 451.5G 97.2 96.8 90.7 86.8 96.0 75.2
ReContrast [14] 154.2M 67.4G 98.3 97.1 93.2 95.5 98.5 91.9
RD4AD [10] 126.7M 32.1G 94.6 96.1 91.1 92.4 98.1 91.8
ViTAD [65] 39.0M 9.7G 98.3 97.7 91.4 90.5 98.2 85.1

Dinomaly-Base-3922 148M 104.7G 99.6 98.4 94.8 98.7 98.7 94.5
Dinomaly-Base-2802 148M 53.7G 99.6 98.2 93.6 97.8 98.7 92.4
Dinomaly-Small-3922 37.4M 26.2G 99.3 98.1 94.4 97.9 98.6 93.7
Dinomaly-Small-2802 37.4M 14.5G 99.3 98.0 93.4 96.5 98.5 90.9

Table A12. Results of 5 random seeds on MVTec-AD (%).

Random Seed
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

seed=1 99.60 99.78 99.04 98.35 69.29 69.17 94.79
seed=2 99.63 99.79 99.12 98.33 68.73 68.91 94.63
seed=3 99.63 99.79 99.16 98.31 68.70 68.93 94.60
seed=4 99.56 99.74 99.02 98.33 69.04 69.09 94.70
seed=5 99.59 99.77 99.02 98.32 68.64 68.47 94.51
mean±std 99.60±0.03 99.77±0.02 99.07±0.06 98.33±0.01 68.88±0.25 68.91±0.24 94.65±0.09

be a good noise injector in Noisy Bottleneck. Meanwhile,
Dropout is more robust to the noisy scale hyperparameter,
and more elegant without introducing new modules.

Adaptation on CNN Method. Some proposed ele-
ments (Linear Attention and Loose Constraint) are closely
bounded to modern ViTs. Loose Loss (hard-mining)
can be directly applied to previous CNN-based methods,
e.g., RD4AD [10]. Noisy Bottleneck can be adapted to
RD4AD with minor modifications (apply dropout before
MFF layer). We apply these modules to RD4AD to vali-
date the effectiveness of our contributions. The results are
shown in Table A9, where these two elements boost the per-
formance of RD4AD to a whole new level that can be com-
pared with prior MUAD SoTAs.

Scaling of Compared Method. As previously discussed
in the Experiment section, compared method cannot fully
utilize the scaling of pre-trained method, model size, and in-
put size. For example, RD4AD [10] found WideResNet50
better than WideResNet101 as the encoder backbone. Vi-
TAD [65] found ViT-Small better than ViT-Base. Here, we
also present the experiments on pre-training method and in-
put size of ViTAD, as shown in Table A10. It is also noted
that the paradigm of ViTAD is very similar to RD4AD (re-
placing CNN by ViT) as well as the starting point of Dino-
maly (the first row in the ablation Table 3).

Computation Comparison. The computation costs of
Dinomaly variants were previously presented in Table 4 and

Table A2. Here, we compare the computation consumption
of Dinomaly and prior works. As shown in Table A11, Di-
nomaly can be easily scaled by model size and input size to
match different application scenarios.

Random Seeds. Due to limited computation resources,
experiments in this paper are conducted for one run with
random seed=1. Here, we conduct 5 runs with 5 random
seeds on MVTec-AD. As shown in Table A12, Dinomaly is
robust to randomness.

D. Additional Dataset

To demonstrate the generalization of our method, we con-
duct experiments on three more popular anomaly detection
datasets under MUAD setting, including MPDD and BTAD
and Uni-Medical. The MPDD [24] (Metal Parts Defect De-
tection Dataset ) is a dataset aimed at benchmarking visual
defect detection methods in industrial metal parts manu-
facturing. It consists of more than 1346 images across 6
categories with pixel-precise defect annotation masks. The
BTAD [38] ( beanTech Anomaly Detection) dataset is a
real-world industrial anomaly dataset. The dataset contains
a total of 2830 real-world images of 3 industrial products
showcasing body and surface defects. It is noted that the
training set of BTAD is noisy because it contains anomalous
samples [25]. Uni-Medical [66] is a medical UAD dataset
consisting of 2D image slices from 3D CT volumes. It con-



Table A13. Performance on MPDD and BTAD under multi-class UAD setting (%). †: method designed for MUAD.

Dateset Method
Image-level Pixel-level

AUROC AP F1 -max AUROC AP F1 -max AUPRO

MPDD [24]

RD4AD [10] 90.3 92.8 90.5 98.3 39.6 40.6 95.2
SimpleNet [34] 90.6 94.1 89.7 97.1 33.6 35.7 90.0
DeSTSeg [67] 92.6 91.8 92.8 90.8 30.6 32.9 78.3
UniAD [60]† 80.1 83.2 85.1 95.4 19.0 25.6 83.8
DiAD [18]† 85.8 89.2 86.5 91.4 15.3 19.2 66.1
ViTAD [65]† 87.4 90.8 87.0 97.8 44.1 46.4 95.3

MambaAD [17]† 89.2 93.1 90.3 97.7 33.5 38.6 92.8
Dinomaly (Ours) 97.2 98.4 96.0 99.1 59.5 59.4 96.6

BTAD [38]

RD4AD [10] 94.1 96.8 93.8 98.0 57.1 58.0 79.9
SimpleNet [34] 94.0 97.9 93.9 96.2 41.0 43.7 69.6
DeSTSeg [67] 93.5 96.7 93.8 94.8 39.1 38.5 72.9
UniAD [60]† 94.5 98.4 94.9 97.4 52.4 55.5 78.9
DiAD [18]† 90.2 88.3 92.6 91.9 20.5 27.0 70.3
ViTAD [65]† 94.0 97.0 93.7 97.6 58.3 56.5 72.8

MambaAD [17]† 92.9 96.2 93.0 97.6 51.2 55.1 77.3
Dinomaly (Ours) 95.4 98.4 95.6 97.8 70.1 68.0 76.5

Uni-Medical [66]

RD4AD [10] 76.1 75.3 78.2 96.5 38.3 39.8 86.8
SimpleNet [34] 77.5 77.7 76.7 94.3 34.4 36.0 77.0
DeSTSeg [67] 78.5 77.0 78.2 65.7 41.7 34.0 35.3
UniAD [60]† 79.0 76.1 77.1 96.6 39.3 41.1 86.0
DiAD [18]† 78.8 77.2 77.7 95.8 34.2 35.5 84.3
ViTAD [65]† 81.8 80.7 80.0 97.1 48.3 48.2 86.7

MambaAD [17]† 83.9 80.8 81.9 96.8 45.8 47.5 88.2
Dinomaly (Ours) 84.9 84.1 81.0 96.8 51.7 52.1 85.5

tains 13339 training images and 7013 test images across
three objects, i.e., brain CT, liver CT, and retinal OCT. This
dataset is not entirely suitable for evaluating 2D anomaly
detection methods, as identifying lesions in medical images
requires 3D contextual information. The training hyperpa-
rameters are the same to MVTec-AD, except the dropout
rate for Uni-Medical is increased to 0.4. The performance
of Dinomaly and previous SoTAs is presented in Table A13,
where our method demonstrates superior results.

E. Results Per-Category
For future research, we report the per-class results of
MVTec-AD [3], VisA [70], and Real-IAD [54]. The per-
formance of compared methods is drawn from MambaAD
[17]. Thanks for their exhaustive reproducing. The results
of image-level anomaly detection and pixel-level anomaly
localization on MVTec-AD are presented in Table A14
and Table A15, respectively. The results of image-level
anomaly detection and pixel-level anomaly localization on
VisA are presented in Table A16 and Table A17, respec-
tively. The results of image-level anomaly detection and
pixel-level anomaly localization on Real-IAD are presented
in Table A18 and Table A19, respectively.

F. Qualitative Visualization
We visualize the output anomaly maps of Dinomaly on
MVTec-AD, VisA, and Real-IAD, as shown in Figure A1,

Figure A2, and Figure A3. It is noted that all visualized
samples are randomly chosen without artificial selection.

G. Limitation
Vision Transformers are known for their high computation
cost, which can be a barrier to low-computation scenar-
ios that require inference speed. Future research can be
conducted on the efficiency of Transformer-based methods,
such as distillation, pruning, and hardware-friendly atten-
tion mechanism (such as FlashAttention).

As discussed in section A, Dinomaly is used for sensory
AD that aims to detect regional anomalies in normal back-
grounds. It is not suitable for semantic AD. Previous works
have shown that methods designed for sensory AD usually
fail to be competitive under semantic AD tasks [10, 60].
Conversely, methods designed for semantic AD do not per-
form well on sensory AD tasks [42, 43]. Future work can
be conducted to unify these two tasks, but according to the
”no free lunch” theorem, we believe that methods designed
for specific anomaly assumption are likely to be more con-
vincing.

Other special UAD settings, such as zero-shot UAD
(vision-language model based) [23], few-shot UAD [22],
UAD under noisy training set [25], are not included in this
work.



Table A14. Per-class performance on MVTec-AD dataset for multi-class anomaly detection with AUROC/AP/F1-max metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD [17] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

O
bjects

Bottle 99.6/99.9/98.4 99.7/100./100. 100./100./100. 98.7/99.6/96.8 99.7/96.5/91.8 100./100./100. 100./100./100.
Cable 84.1/89.5/82.5 95.2/95.9/88.0 97.5/98.5/94.7 89.5/94.6/85.9 94.8/98.8/95.2 98.8/99.2/95.7 100./100./100.

Capsule 94.1/96.9/96.9 86.9/97.8/94.4 90.7/97.9/93.5 82.8/95.9/92.6 89.0/97.5/95.5 94.4/98.7/94.9 97.9/99.5/97.7
Hazelnut 60.8/69.8/86.4 99.8/100./99.3 99.9/99.9/99.3 98.8/99.2/98.6 99.5/99.7/97.3 100./100./100. 100./100./100.
Metal Nut 100./100./99.5 99.2/99.9/99.5 96.9/99.3/96.1 92.9/98.4/92.2 99.1/96.0/91.6 99.9/100./99.5 100./100./100.

Pill 97.5/99.6/96.8 93.7/98.7/95.7 88.2/97.7/92.5 77.1/94.4/91.7 95.7/98.5/94.5 97.0/99.5/96.2 99.1/99.9/98.3
Screw 97.7/99.3/95.8 87.5/96.5/89.0 76.7/90.6/87.7 69.9/88.4/85.4 90.7/99.7/97.9 94.7/97.9/94.0 98.4/99.5/96.1

Toothbrush 97.2/99.0/94.7 94.2/97.4/95.2 89.7/95.7/92.3 71.7/89.3/84.5 99.7/99.9/99.2 98.3/99.3/98.4 100./100./100.
Transistor 94.2/95.2/90.0 99.8/98.0/93.8 99.2/98.7/97.6 78.2/79.5/68.8 99.8/99.6/97.4 100./100./100. 99.0/98.0/96.4

Zipper 99.5/99.9/99.2 95.8/99.5/97.1 99.0/99.7/98.3 88.4/96.3/93.1 95.1/99.1/94.4 99.3/99.8/97.5 100./100./100.

Textures

Carpet 98.5/99.6/97.2 99.8/99.9/99.4 95.7/98.7/93.2 95.9/98.8/94.9 99.4/99.9/98.3 99.8/99.9/99.4 99.8/100./98.9
Grid 98.0/99.4/96.5 98.2/99.5/97.3 97.6/99.2/96.4 97.9/99.2/96.6 98.5/99.8/97.7 100./100./100. 99.9/100./99.1

Leather 100./100./100. 100./100./100. 100./100./100. 99.2/99.8/98.9 99.8/99.7/97.6 100./100./100. 100./100./100.
Tile 98.3/99.3/96.4 99.3/99.8/98.2 99.3/99.8/98.8 97.0/98.9/95.3 96.8/99.9/98.4 98.2/99.3/95.4 100./100./100.

Wood 99.2/99.8/98.3 98.6/99.6/96.6 98.4/99.5/96.7 99.9/100./99.2 99.7/100./100. 98.8/99.6/96.6 99.8/99.9/99.2
Mean 94.6/96.5/95.2 96.5/98.8/96.2 95.3/98.4/95.8 89.2/95.5/91.6 97.2/99.0/96.5 98.6/99.6/97.8 99.6/99.8/99.0

Table A15. Per-class performance on MVTec-AD dataset for multi-class anomaly localization with AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD [17] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

O
bjects

Bottle 97.8/68.2/67.6/94.0 98.1/66.0/69.2/93.1 97.2/53.8/62.4/89.0 93.3/61.7/56.0/67.5 98.4/52.2/54.8/86.6 98.8/79.7/76.7/95.2 99.2/88.6/84.2/96.6
Cable 85.1/26.3/33.6/75.1 97.3/39.9/45.2/86.1 96.7/42.4/51.2/85.4 89.3/37.5/40.5/49.4 96.8/50.1/57.8/80.5 95.8/42.2/48.1/90.3 98.6/72.0/74.3/94.2

Capsule 98.8/43.4/50.0/94.8 98.5/42.7/46.5/92.1 98.5/35.4/44.3/84.5 95.8/47.9/48.9/62.1 97.1/42.0/45.3/87.2 98.4/43.9/47.7/92.6 98.7/61.4/60.3/97.2
Hazelnut 97.9/36.2/51.6/92.7 98.1/55.2/56.8/94.1 98.4/44.6/51.4/87.4 98.2/65.8/61.6/84.5 98.3/79.2/80.4/91.5 99.0/63.6/64.4/95.7 99.4/82.2/76.4/97.0
Metal Nut 94.8/55.5/66.4/91.9 62.7/14.6/29.2/81.8 98.0/83.1/79.4/85.2 84.2/42.0/22.8/53.0 97.3/30.0/38.3/90.6 96.7/74.5/79.1/93.7 96.9/78.6/86.7/94.9

Pill 97.5/63.4/65.2/95.8 95.0/44.0/53.9/95.3 96.5/72.4/67.7/81.9 96.2/61.7/41.8/27.9 95.7/46.0/51.4/89.0 97.4/64.0/66.5/95.7 97.8/76.4/71.6/97.3
Screw 99.4/40.2/44.6/96.8 98.3/28.7/37.6/95.2 96.5/15.9/23.2/84.0 93.8/19.9/25.3/47.3 97.9/60.6/59.6/95.0 99.5/49.8/50.9/97.1 99.6/60.2/59.6/98.3

Toothbrush 99.0/53.6/58.8/92.0 98.4/34.9/45.7/87.9 98.4/46.9/52.5/87.4 96.2/52.9/58.8/30.9 99.0/78.7/72.8/95.0 99.0/48.5/59.2/91.7 98.9/51.5/62.6/95.3
Transistor 85.9/42.3/45.2/74.7 97.9/59.5/64.6/93.5 95.8/58.2/56.0/83.2 73.6/38.4/39.2/43.9 95.1/15.6/31.7/90.0 96.5/69.4/67.1/87.0 93.2/59.9/58.5/77.0

Zipper 98.5/53.9/60.3/94.1 96.8/40.1/49.9/92.6 97.9/53.4/54.6/90.7 97.3/64.7/59.2/66.9 96.2/60.7/60.0/91.6 98.4/60.4/61.7/94.3 99.2/79.5/75.4/97.2

Textures

Carpet 99.0/58.5/60.4/95.1 98.5/49.9/51.1/94.4 97.4/38.7/43.2/90.6 93.6/59.9/58.9/89.3 98.6/42.2/46.4/90.6 99.2/60.0/63.3/96.7 99.3/68.7/71.1/97.6
Grid 96.5/23.0/28.4/97.0 63.1/10.7/11.9/92.9 96.8/20.5/27.6/88.6/ 97.0/42.1/46.9/86.8 96.6/66.0/64.1/94.0 99.2/47.4/47.7/97.0 99.4/55.3/57.7/97.2

Leather 99.3/38.0/45.1/97.4 98.8/32.9/34.4/96.8 98.7/28.5/32.9/92.7 99.5/71.5/66.5/91.1 98.8/56.1/62.3/91.3 99.4/50.3/53.3/98.7 99.4/52.2/55.0/97.6
Tile 95.3/48.5/60.5/85.8 91.8/42.1/50.6/78.4 95.7/60.5/59.9/90.6 93.0/71.0/66.2/87.1 92.4/65.7/64.1/90.7 93.8/45.1/54.8/80.0 98.1/80.1/75.7/90.5

Wood 95.3/47.8/51.0/90.0 93.2/37.2/41.5/86.7 91.4/34.8/39.7/76.3 95.9/77.3/71.3/83.4 93.3/43.3/43.5/97.5 94.4/46.2/48.2/91.2 97.6/72.8/68.4/94.0
Mean 96.1/48.6/53.8/91.1 96.8/43.4/49.5/90.7 96.9/45.9/49.7/86.5 93.1/54.3/50.9/64.8 96.8/52.6/55.5/90.7 97.7/56.3/59.2/93.1 98.4/69.3/69.2/94.8

Table A16. Per-class performance on VisA dataset for multi-class anomaly detection with AUROC/AP/F1-max metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

pcb1 96.2/95.5/91.9 92.8/92.7/87.8 91.6/91.9/86.0 87.6/83.1/83.7 88.1/88.7/80.7 95.4/93.0/91.6 99.1/99.1/96.6
pcb2 97.8/97.8/94.2 87.8/87.7/83.1 92.4/93.3/84.5 86.5/85.8/82.6 91.4/91.4/84.7 94.2/93.7/89.3 99.3/99.2/97.0
pcb3 96.4/96.2/91.0 78.6/78.6/76.1 89.1/91.1/82.6 93.7/95.1/87.0 86.2/87.6/77.6 93.7/94.1/86.7 98.9/98.9/96.1
pcb4 99.9/99.9/99.0 98.8/98.8/94.3 97.0/97.0/93.5 97.8/97.8/92.7 99.6/99.5/97.0 99.9/99.9/98.5 99.8/99.8/98.0

macaroni1 75.9/ 1.5/76.8 79.9/79.8/72.7 85.9/82.5/73.1 76.6/69.0/71.0 85.7/85.2/78.8 91.6/89.8/81.6 98.0/97.6/94.2
macaroni2 88.3/84.5/83.8 71.6/71.6/69.9 68.3/54.3/59.7 68.9/62.1/67.7 62.5/57.4/69.6 81.6/78.0/73.8 95.9/95.7/90.7
capsules 82.2/90.4/81.3 55.6/55.6/76.9 74.1/82.8/74.6 87.1/93.0/84.2 58.2/69.0/78.5 91.8/95.0/88.8 98.6/99.0/97.1
candle 92.3/92.9/86.0 94.1/94.0/86.1 84.1/73.3/76.6 94.9/94.8/89.2 92.8/92.0/87.6 96.8/96.9/90.1 98.7/98.8/95.1
cashew 92.0/95.8/90.7 92.8/92.8/91.4 88.0/91.3/84.7 92.0/96.1/88.1 91.5/95.7/89.7 94.5/97.3/91.1 98.7/99.4/97.0

chewinggum 94.9/97.5/92.1 96.3/96.2/95.2 96.4/98.2/93.8 95.8/98.3/94.7 99.1/99.5/95.9 97.7/98.9/94.2 99.8/99.9/99.0
fryum 95.3/97.9/91.5 83.0/83.0/85.0 88.4/93.0/83.3 92.1/96.1/89.5 89.8/95.0/87.2 95.2/97.7/90.5 98.8/99.4/96.5

pipe fryum 97.9/98.9/96.5 94.7/94.7/93.9 90.8/95.5/88.6 94.1/97.1/91.9 96.2/98.1/93.7 98.7/99.3/97.0 99.2/99.7/97.0
Mean 92.4/92.4/89.6 85.5/85.5/84.4 87.2/87.0/81.8 88.9/89.0/85.2 86.8/88.3/85.1 94.3/94.5/89.4 98.7/98.9/96.2



Table A17. Per-class performance on VisA dataset for multi-class anomaly localization with AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

pcb1 99.4/66.2/62.4/95.8 93.3/ 3.9/ 8.3/64.1 99.2/86.1/78.8/83.6 95.8/46.4/49.0/83.2 98.7/49.6/52.8/80.2 99.8/77.1/72.4/92.8 99.5/87.9/80.5/95.1
pcb2 98.0/22.3/30.0/90.8 93.9/ 4.2/ 9.2/66.9 96.6/ 8.9/18.6/85.7 97.3/14.6/28.2/79.9 95.2/ 7.5/16.7/67.0 98.9/13.3/23.4/89.6 98.0/47.0/49.8/91.3
pcb3 97.9/26.2/35.2/93.9 97.3/13.8/21.9/70.6 97.2/31.0/36.1/85.1 97.7/28.1/33.4/62.4 96.7/ 8.0/18.8/68.9 99.1/18.3/27.4/89.1 98.4/41.7/45.3/94.6
pcb4 97.8/31.4/37.0/88.7 94.9/14.7/22.9/72.3 93.9/23.9/32.9/61.1 95.8/53.0/53.2/76.9 97.0/17.6/27.2/85.0 98.6/47.0/46.9/87.6 98.7/50.5/53.1/94.4

macaroni1 99.4/ 2.9/6.9/95.3 97.4/ 3.7/ 9.7/84.0 98.9/ 3.5/8.4/92.0 99.1/ 5.8/13.4/62.4 94.1/10.2/16.7/68.5 99.5/17.5/27.6/95.2 99.6/33.5/40.6/96.4
macaroni2 99.7/13.2/21.8/97.4 95.2/ 0.9/ 4.3/76.6 93.2/ 0.6/ 3.9/77.8 98.5/ 6.3/14.4/70.0 93.6/ 0.9/ 2.8/73.1 99.5/ 9.2/16.1/96.2 99.7/24.7/36.1/98.7
capsules 99.4/60.4/60.8/93.1 88.7/ 3.0/ 7.4/43.7 97.1/52.9/53.3/73.7 96.9/33.2/ 9.1/76.7 97.3/10.0/21.0/77.9 99.1/61.3/59.8/91.8 99.6/65.0/66.6/97.4
candle 99.1/25.3/35.8/94.9 98.5/17.6/27.9/91.6 97.6/ 8.4/16.5/87.6 98.7/39.9/45.8/69.0 97.3/12.8/22.8/89.4 99.0/23.2/32.4/95.5 99.4/43.0/47.9/95.4

cashew 91.7/44.2/49.7/86.2 98.6/51.7/58.3/87.9 98.9/68.9/66.0/84.1 87.9/47.6/52.1/66.3 90.9/53.1/60.9/61.8 94.3/46.8/51.4/87.8 97.1/64.5/62.4/94.0
chewinggum 98.7/59.9/61.7/76.9 98.8/54.9/56.1/81.3 97.9/26.8/29.8/78.3 98.8/86.9/81.0/68.3 94.7/11.9/25.8/59.5 98.1/57.5/59.9/79.7 99.1/65.0/67.7/88.1

fryum 97.0/47.6/51.5/93.4 95.9/34.0/40.6/76.2 93.0/39.1/45.4/85.1 88.1/35.2/38.5/47.7 97.6/58.6/60.1/81.3 96.9/47.8/51.9/91.6 96.6/51.6/53.4/93.5
pipe fryum 99.1/56.8/58.8/95.4 98.9/50.2/57.7/91.5 98.5/65.6/63.4/83.0 98.9/78.8/72.7/45.9 99.4/72.7/69.9/89.9 99.1/53.5/58.5/95.1 99.2/64.3/65.1/95.2

Mean 98.1/38.0/42.6/91.8 95.9/21.0/27.0/75.6 96.8/34.7/37.8/81.4 96.1/39.6/43.4/67.4 96.0/26.1/33.0/75.2 98.5/39.4/44.0/91.0 98.7/53.2/55.7/94.5

Table A18. Per-class performance on Real-IAD dataset for multi-class anomaly detection with AUROC/AP/F1-max metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours
audiojack 76.2/63.2/60.8 81.4/76.6/64.9 58.4/44.2/50.9 81.1/72.6/64.5 76.5/54.3/65.7 84.2/76.5/67.4 86.8/82.4/72.2
bottle cap 89.5/86.3/81.0 92.5/91.7/81.7 54.1/47.6/60.3 78.1/74.6/68.1 91.6/94.0/87.9 92.8/92.0/82.1 89.9/86.7/81.2

button battery 73.3/78.9/76.1 75.9/81.6/76.3 52.5/60.5/72.4 86.7/89.2/83.5 80.5/71.3/70.6 79.8/85.3/77.8 86.6/88.9/82.1
end cap 79.8/84.0/77.8 80.9/86.1/78.0 51.6/60.8/72.9 77.9/81.1/77.1 85.1/83.4/84.8 78.0/82.8/77.2 87.0/87.5/83.4
eraser 90.0/88.7/79.7 90.3/89.2/80.2 46.4/39.1/55.8 84.6/82.9/71.8 80.0/80.0/77.3 87.5/86.2/76.1 90.3/87.6/78.6

fire hood 78.3/70.1/64.5 80.6/74.8/66.4 58.1/41.9/54.4 81.7/72.4/67.7 83.3/81.7/80.5 79.3/72.5/64.8 83.8/76.2/69.5
mint 65.8/63.1/64.8 67.0/66.6/64.6 52.4/50.3/63.7 58.4/55.8/63.7 76.7/76.7/76.0 70.1/70.8/65.5 73.1/72.0/67.7

mounts 88.6/79.9/74.8 87.6/77.3/77.2 58.7/48.1/52.4 74.7/56.5/63.1 75.3/74.5/82.5 86.8/78.0/73.5 90.4/84.2/78.0
pcb 79.5/85.8/79.7 81.0/88.2/79.1 54.5/66.0/75.5 82.0/88.7/79.6 86.0/85.1/85.4 89.1/93.7/84.0 92.0/95.3/87.0

phone battery 87.5/83.3/77.1 83.6/80.0/71.6 51.6/43.8/58.0 83.3/81.8/72.1 82.3/77.7/75.9 90.2/88.9/80.5 92.9/91.6/82.5
plastic nut 80.3/68.0/64.4 80.0/69.2/63.7 59.2/40.3/51.8 83.1/75.4/66.5 71.9/58.2/65.6 87.1/80.7/70.7 88.3/81.8/74.7

plastic plug 81.9/74.3/68.8 81.4/75.9/67.6 48.2/38.4/54.6 71.7/63.1/60.0 88.7/89.2/90.9 85.7/82.2/72.6 90.5/86.4/78.6
porcelain doll 86.3/76.3/71.5 85.1/75.2/69.3 66.3/54.5/52.1 78.7/66.2/64.3 72.6/66.8/65.2 88.0/82.2/74.1 85.1/73.3/69.6

regulator 66.9/48.8/47.7 56.9/41.5/44.5 50.5/29.0/43.9 79.2/63.5/56.9 72.1/71.4/78.2 69.7/58.7/50.4 85.2/78.9/69.8
rolled strip base 97.5/98.7/94.7 98.7/99.3/96.5 59.0/75.7/79.8 96.5/98.2/93.0 68.4/55.9/56.8 98.0/99.0/95.0 99.2/99.6/97.1

sim card set 91.6/91.8/84.8 89.7/90.3/83.2 63.1/69.7/70.8 95.5/96.2/89.2 72.6/53.7/61.5 94.4/95.1/87.2 95.8/96.3/88.8
switch 84.3/87.2/77.9 85.5/88.6/78.4 62.2/66.8/68.6 90.1/92.8/83.1 73.4/49.4/61.2 91.7/94.0/85.4 97.8/98.1/93.3
tape 96.0/95.1/87.6 97.2/96.2/89.4 49.9/41.1/54.5 94.5/93.4/85.9 73.9/57.8/66.1 96.8/95.9/89.3 96.9/95.0/88.8

terminalblock 89.4/89.7/83.1 87.5/89.1/81.0 59.8/64.7/68.8 83.1/86.2/76.6 62.1/36.4/47.8 96.1/96.8/90.0 96.7/97.4/91.1
toothbrush 82.0/83.8/77.2 78.4/80.1/75.6 65.9/70.0/70.1 83.7/85.3/79.0 91.2/93.7/90.9 85.1/86.2/80.3 90.4/91.9/83.4

toy 69.4/74.2/75.9 68.4/75.1/74.8 57.8/64.4/73.4 70.3/74.8/75.4 66.2/57.3/59.8 83.0/87.5/79.6 85.6/89.1/81.9
toy brick 63.6/56.1/59.0 77.0/71.1/66.2 58.3/49.7/58.2 73.2/68.7/63.3 68.4/45.3/55.9 70.5/63.7/61.6 72.3/65.1/63.4

transistor1 91.0/94.0/85.1 93.7/95.9/88.9 62.2/69.2/72.1 90.2/92.1/84.6 73.1/63.1/62.7 94.4/96.0/89.0 97.4/98.2/93.1
u block 89.5/85.0/74.2 88.8/84.2/75.5 62.4/48.4/51.8 80.1/73.9/64.3 75.2/68.4/67.9 89.7/85.7/75.3 89.9/84.0/75.2

usb 84.9/84.3/75.1 78.7/79.4/69.1 57.0/55.3/62.9 87.8/88.0/78.3 58.9/37.4/45.7 92.0/92.2/84.5 92.0/91.6/83.3
usb adaptor 71.1/61.4/62.2 76.8/71.3/64.9 47.5/38.4/56.5 80.1/74.9/67.4 76.9/60.2/67.2 79.4/76.0/66.3 81.5/74.5/69.4

vcpill 85.1/80.3/72.4 87.1/84.0/74.7 59.0/48.7/56.4 83.8/81.5/69.9 64.1/40.4/56.2 88.3/87.7/77.4 92.0/91.2/82.0
wooden beads 81.2/78.9/70.9 78.4/77.2/67.8 55.1/52.0/60.2 82.4/78.5/73.0 62.1/56.4/65.9 82.5/81.7/71.8 87.3/85.8/77.4

woodstick 76.9/61.2/58.1 80.8/72.6/63.6 58.2/35.6/45.2 80.4/69.2/60.3 74.1/66.0/62.1 80.4/69.0/63.4 84.0/73.3/65.6
zipper 95.3/97.2/91.2 98.2/98.9/95.3 77.2/86.7/77.6 96.9/98.1/93.5 86.0/87.0/84.0 99.2/99.6/96.9 99.1/99.5/96.5

Mean 82.4/79.0/73.9 83.0/80.9/74.3 57.2/53.4/61.5 82.3/79.2/73.2 75.6/66.4/69.9 86.3/84.6/77.0 89.3/86.8/80.2



Table A19. Per-class performance on Real-IAD dataset for multi-class anomaly localization with AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [10] UniAD [60] SimpleNet [34] DeSTSeg [67] DiAD [18] MambaAD [17] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours
audiojack 96.6/12.8/22.1/79.6 97.6/20.0/31.0/83.7 74.4/ 0.9/ 4.8/38.0 95.5/25.4/31.9/52.6 91.6/ 1.0/ 3.9/63.3 97.7/21.6/29.5/83.9 98.7/48.1/54.5/91.7
bottle cap 99.5/18.9/29.9/95.7 99.5/19.4/29.6/96.0 85.3/ 2.3/ 5.7/45.1 94.5/25.3/31.1/25.3 94.6/ 4.9/11.4/73.0 99.7/30.6/34.6/97.2 99.7/32.4/36.7/98.1

button battery 97.6/33.8/37.8/86.5 96.7/28.5/34.4/77.5 75.9/ 3.2/ 6.6/40.5 98.3/63.9/60.4/36.9 84.1/ 1.4/ 5.3/66.9 98.1/46.7/49.5/86.2 99.1/46.9/56.7/92.9
end cap 96.7/12.5/22.5/89.2 95.8/ 8.8/17.4/85.4 63.1/ 0.5/ 2.8/25.7 89.6/14.4/22.7/29.5 81.3/ 2.0/ 6.9/38.2 97.0/12.0/19.6/89.4 99.1/26.2/32.9/96.0
eraser 99.5/30.8/36.7/96.0 99.3/24.4/30.9/94.1 80.6/ 2.7/ 7.1/42.8 95.8/52.7/53.9/46.7 91.1/ 7.7/15.4/67.5 99.2/30.2/38.3/93.7 99.5/39.6/43.3/96.4

fire hood 98.9/27.7/35.2/87.9 98.6/23.4/32.2/85.3 70.5/ 0.3/ 2.2/25.3 97.3/27.1/35.3/34.7 91.8/ 3.2/ 9.2/66.7 98.7/25.1/31.3/86.3 99.3/38.4/42.7/93.0
mint 95.0/11.7/23.0/72.3 94.4/ 7.7/18.1/62.3 79.9/ 0.9/ 3.6/43.3 84.1/10.3/22.4/ 9.9 91.1/ 5.7/11.6/64.2 96.5/15.9/27.0/72.6 96.9/22.0/32.5/77.6

mounts 99.3/30.6/37.1/94.9 99.4/28.0/32.8/95.2 80.5/ 2.2/ 6.8/46.1 94.2/30.0/41.3/43.3 84.3/ 0.4/ 1.1/48.8 99.2/31.4/35.4/93.5 99.4/39.9/44.3/95.6
pcb 97.5/15.8/24.3/88.3 97.0/18.5/28.1/81.6 78.0/ 1.4/ 4.3/41.3 97.2/37.1/40.4/48.8 92.0/ 3.7/ 7.4/66.5 99.2/46.3/50.4/93.1 99.3/55.0/56.3/95.7

phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/ 0.1/ 0.9/11.8 79.5/25.6/33.8/39.5 96.8/ 5.3/11.4/85.4 99.4/36.3/41.3/95.3 99.7/51.6/54.2/96.8
phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/ 0.1/ 0.9/11.8 79.5/25.6/33.8/39.5 96.8/5.3/11.4/85.4 99.4/36.3/41.3/95.3 99.7/51.6/54.2/96.8

plastic nut 98.8/21.1/29.6/91.0 98.4/20.6/27.1/88.9 77.4/ 0.6/ 3.6/41.5 96.5/44.8/45.7/38.4 81.1/ 0.4/ 3.4/38.6 99.4/33.1/37.3/96.1 99.7/41.0/45.0/97.4
plastic plug 99.1/20.5/28.4/94.9 98.6/17.4/26.1/90.3 78.6/ 0.7/ 1.9/38.8 91.9/20.1/27.3/21.0 92.9/ 8.7/15.0/66.1 99.0/24.2/31.7/91.5 99.4/31.7/37.2/96.4

porcelain doll 99.2/24.8/34.6/95.7 98.7/14.1/24.5/93.2 81.8/ 2.0/ 6.4/47.0 93.1/35.9/40.3/24.8 93.1/ 1.4/ 4.8/70.4 99.2/31.3/36.6/95.4 99.3/27.9/33.9/96.0
regulator 98.0/7.8/16.1/88.6 95.5/9.1/17.4/76.1 76.6/0.1/0.6/38.1 88.8/18.9/23.6/17.5 84.2/0.4/1.5/44.4 97.6/20.6/29.8/87.0 99.3/42.2/48.9/95.6

rolled strip base 99.7/31.4/39.9/98.4 99.6/20.7/32.2/97.8 80.5/ 1.7/ 5.1/52.1 99.2/48.7/50.1/55.5 87.7/ 0.6/ 3.2/63.4 99.7/37.4/42.5/98.8 99.7/41.6/45.5/98.5
sim card set 98.5/40.2/44.2/89.5 97.9/31.6/39.8/85.0 71.0/ 6.8/14.3/30.8 99.1/65.5/62.1/73.9 89.9/ 1.7/ 5.8/60.4 98.8/51.1/50.6/89.4 99.0/52.1/52.9/90.9

switch 94.4/18.9/26.6/90.9 98.1/33.8/40.6/90.7 71.7/ 3.7/ 9.3/44.2 97.4/57.6/55.6/44.7 90.5/ 1.4/ 5.3/64.2 98.2/39.9/45.4/92.9 96.7/62.3/63.6/95.9
tape 99.7/42.4/47.8/98.4 99.7/29.2/36.9/97.5 77.5/ 1.2/ 3.9/41.4 99.0/61.7/57.6/48.2 81.7/ 0.4/ 2.7/47.3 99.8/47.1/48.2/98.0 99.8/54.0/55.8/98.8

terminalblock 99.5/27.4/35.8/97.6 99.2/23.1/30.5/94.4 87.0/ 0.8/ 3.6/54.8 96.6/40.6/44.1/34.8 75.5/ 0.1/ 1.1/38.5 99.8/35.3/39.7/98.2 99.8/48.0/50.7/98.8
toothbrush 96.9/26.1/34.2/88.7 95.7/16.4/25.3/84.3 84.7/ 7.2/14.8/52.6 94.3/30.0/37.3/42.8 82.0/ 1.9/ 6.6/54.5 97.5/27.8/36.7/91.4 96.9/38.3/43.9/90.4

toy 95.2/ 5.1/12.8/82.3 93.4/ 4.6/12.4/70.5 67.7/ 0.1/ 0.4/25.0 86.3/ 8.1/15.9/16.4 82.1/ 1.1/ 4.2/50.3 96.0/16.4/25.8/86.3 94.9/22.5/32.1/91.0
toy brick 96.4/16.0/24.6/75.3 97.4/17.1/27.6/81.3 86.5/ 5.2/11.1/56.3 94.7/24.6/30.8/45.5 93.5/ 3.1/ 8.1/66.4 96.6/18.0/25.8/74.7 96.8/27.9/34.0/76.6

transistor1 99.1/29.6/35.5/95.1 98.9/25.6/33.2/94.3 71.7/ 5.1/11.3/35.3 97.3/43.8/44.5/45.4 88.6/ 7.2/15.3/58.1 99.4/39.4/40.0/96.5 99.6/53.5/53.3/97.8
u block 99.6/40.5/45.2/96.9 99.3/22.3/29.6/94.3 76.2/ 4.8/12.2/34.0 96.9/57.1/55.7/38.5 88.8/ 1.6/ 5.4/54.2 99.5/37.8/46.1/95.4 99.5/41.8/45.6/96.8

usb 98.1/26.4/35.2/91.0 97.9/20.6/31.7/85.3 81.1/ 1.5/ 4.9/52.4 98.4/42.2/47.7/57.1 78.0/ 1.0/ 3.1/28.0 99.2/39.1/44.4/95.2 99.2/45.0/48.7/97.5
usb adaptor 94.5/ 9.8/17.9/73.1 96.6/10.5/19.0/78.4 67.9/ 0.2/ 1.3/28.9 94.9/25.5/34.9/36.4 94.0/ 2.3/ 6.6/75.5 97.3/15.3/22.6/82.5 98.7/23.7/32.7/91.0

vcpill 98.3/43.1/48.6/88.7 99.1/40.7/43.0/91.3 68.2/ 1.1/ 3.3/22.0 97.1/64.7/62.3/42.3 90.2/ 1.3/ 5.2/60.8 98.7/50.2/54.5/89.3 99.1/66.4/66.7/93.7
wooden beads 98.0/27.1/34.7/85.7 97.6/16.5/23.6/84.6 68.1/ 2.4/ 6.0/28.3 94.7/38.9/42.9/39.4 85.0/ 1.1/ 4.7/45.6 98.0/32.6/39.8/84.5 99.1/45.8/50.1/90.5

woodstick 97.8/30.7/38.4/85.0 94.0/36.2/44.3/77.2 76.1/ 1.4/ 6.0/32.0 97.9/60.3/60.0/51.0 90.9/ 2.6/ 8.0/60.7 97.7/40.1/44.9/82.7 99.0/50.9/52.1/90.4
zipper 99.1/44.7/50.2/96.3 98.4/32.5/36.1/95.1 89.9/23.3/31.2/55.5 98.2/35.3/39.0/78.5 90.2/12.5/18.8/53.5 99.3/58.2/61.3/97.6 99.3/67.2/66.5/97.8
Mean 97.3/25.0/32.7/89.6 97.3/21.1/29.2/86.7 75.7/ 2.8/ 6.5/39.0 94.6/37.9/41.7/40.6 88.0/ 2.9/ 7.1/58.1 98.5/33.0/38.7/90.5 98.8/42.8/47.1/93.9



Figure A1. Anomaly maps visualization on MVTec-AD. All samples are randomly chosen.



Figure A2. Anomaly maps visualization on VisA. All samples are randomly chosen.



Figure A3. Anomaly maps visualization on Real-IAD. All samples are randomly chosen.
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