DreamTrack: Dreaming the Future for Multimodal Visual Object Tracking

Supplementary Material

The supplementary material presents additional details
and analyses of our model.

* More Challenging Benchmarks
We evaluate the proposed method in more challenging
benchmarks, including VOT [8-10] and large-scale long-
term datasets (e.g., VastTrack [13]).

¢ Generalization in Different Paradigms
We show the generalization of our method in both CNN
and Transformer-based frameworks.

* Different Prediction Modalities
We compare different modalities in multimodal predic-
tion to handle the uncertainty of future forecasting.

¢ Different Dreaming Steps
We explore the influence of dreaming steps to enjoy more
bonus from the temporal learning of future dreaming.

¢ Position of Future Dreaming
We compare different positions of future dreaming to
achieve a better understanding of the environment.

¢ Ground-Truth Future States
We explore the gap between the dreamed future and
ground-truth future by inference with the extracted fea-
tures of real future frames.

* Update of Target Query
We evaluate the performance without the historical infor-
mation by freezing the target queries in inference.

* Reconstruction of Template and Search Region
We ablate the reconstruction of the template and search
region to show the influence in future dreaming.

¢ Scale of Training Data
We explore the influence of training data volume to show
the effectiveness of our method with data-driven learning.

« Attribute Results on LaSOT
We detail the performance of the video sequences in La-
SOT which are labeled with specific attributes.

* More Visualization Results
We provide more visualization results of the attention
maps and dreamed future frames.

More Challenging Benchmarks. With the proposed fu-
ture dreaming module to benefit from both historical and
future information, our DreamTrack is capable of general-
izing in new tracking scenarios. We further demonstrate
this by evaluating on more challenging benchmarks, includ-
ing VOT2018LT [8], VOT2020 [9], VOT2022 [10], Ox-
UvA [14], TLP [12] and VastTrack [13]. The results are
listed in Tab. 1. It shows that our method still achieves out-
standing performance under more complex tracking envi-
ronment, proving its effectiveness. Notably, we also apply
LoRA [6] to our DreamTrack;ss, which aims to improve
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Figure 1. (a) Generality of our framework on both CNN- and
transformer-based paradigms. (b) “multimodality” in the predic-
tion module, which indicates multiple possible motion behaviors.

model efficiency with trainable rank decomposition matri-
ces. The resulted tracker DreamTrack-LoRA,s5¢ performs
better with much faster inference speed (217FPS), which
achieves balanced performance and efficiency. Besides, we
employ SAM [7] as the post-processing to output segmen-
tation masks of tracking target for VOT evaluation [8—10].
The superior performance of DreamTrack;ss+SAM further
proves the effectiveness of our design to provide accurate
localization of the tracking target.

Generalization in Different Paradigms. Our method is
general to be applied to both CNN and Transformer-based
paradigms. As shown in Fig. 1(b), learnable queries Q} ;"
cache temporal dynamics by interacting with image features
in the dream and decoder stages, in which cross-attention
(Transformer-wise) can be replaced by cross-correlation
(CNN-wise). The encoder stage can be constructed with
CNN backbone and correlation. We further demonstrate
this by applying our design to a CNN tracker SiamCAR [5].
The resulted tracker DreamCARjss in Tab. 1 achieves supe-
rior performance in various challenging benchmarks, which
proves the effectiveness and generalization of our method.

Different Prediction Modalities. The “multimodality” in
our methodology refers to different possibilities of the tar-
get’s future behavior instead of inputs from different sen-
sors (“Decoder” of Sec. 3.2 in the main text). As shown in
Fig. 1(a), the car could go straight or turn left/back. We in-
troduce this concept into visual object tracking, and propose
the Multimodal Prediction module to handle the high de-
gree of uncertainty in predicting the target’s future motion.
In our design, three possible future situations are included
in the prediction, i.e., the modality of 3. We then explore the
influence of different prediction modalities, as illustrated in
Tab. 2. The results show that more modalities help to model
different motion modes of the target in the future, which
leads to superior performance (® v.5.@ v.s.®). It’s worth
noting that the prediction modality of 4 shows no obvious
gains compared with the one of 3 modalities (@ v.5.®). This



Method VOT2018LT VOT2020 VOT2022 OxUvA TLP VastTrack FPS

etho P R F A R EAO A R EAO | TPR TNR MaxGM | SUC P suc P
OSTrackase [16] 0.556 0.613 0.579 | 0464 0.779 0301 | 0.778 0.802 0.514 | 0.847 0.822 0.835 576 627 | 33.6 31.5| 105
LoRAT4 [11] 0.584 0.646 0.610 | 0.469 0.804 0313 | 0.796 0.814 0.532 | 0.888 0.856 0.872 61.1 64.1 | 39.3 40.8 | 209
ARTrackV2;s6 [1] 0.592 0.654 0.622 | 0475 0.814 0.318 | 0.803 0.821 0.542 | 0.893 0.871 0.882 60.7 645 | 409 415 | 9%
DreamTrack;s 0.610 0.677 0.642 | 0.487 0.833 0.335 | 0.825 0.837 0.561 | 0.920 0.887 0.903 633 66.7 | 427 43.8 | 139
DreamTrack-LoRA ;s 0.617 0.680 0.645 | 0.492 0.831 0.337 | 0.830 0.841 0.565 | 0.924 0.890 0.907 64.1 67.1 | 429 437 | 217
ARTrackV2ys6 [11+SAM [7] | 0.714 0.687 0.705 | 0.767 0.874 0.606 | 0.837 0.867 0.623 - 14
DreamTrack;se+SAM [7] | 0.740 0.711 0.728 | 0.789 0.908 0.631 | 0.850 0.896 0.649 - 19
SiamCARyss [5] 0.442 0481 0461 | 0414 0.711 0235 | 0.691 0.673 0.374 | 0.494 0.521 0.507 313 327|270 253 | 52
DreamCAR;s5 0475 0.503 0.488 | 0.437 0.744 0.266 | 0.712 0.733 0.416 | 0.519 0.538 0.528 339 355 | 31.1 30.6 | 46

Table 1. State-of-the-art comparison on VOT2018LT [8], VOT2020 [9], VOT2022 [10], OxUVA [14], TLP [12] and VastTrack [13]. The

number in the subscript denotes the search region resolution.

# | Prediction Modality | LaSOT [3] LaSOText[4] | TNL2K [15] “ Architecture LaSOT [3] TNL2K [15]
y SUC(%) P(%)|SUC(%) P(%)|SUC(%) P(%) SUC(%) Pnorm(%) P(%)|SUC(%) P(%)

)] 1 73.1 79.0 51.9 58.4 59.5 61.1 @ | Dream-Encoder-Decoder | 73.8 83.4 80.6 60.4 63.2

@ 2 73.6 79.8 52.8 59.5 60.2 62.5 @ | Encoder-Dream-Decoder | 70.7 80.6 77.1 57.0 58.6

® 3 738 80.6 | 531 598 | 604 63.2

@ 4 738 805 530 600) 603 629 Table 4. Ablation on the position of the dream stage.

Table 2. Ablation on the modality of the Multimodal Prediction.

- LaSOT [3] TNL2K [15]
# | Dreaming Step 6 G5 P o (%) P(%) | SUC(%) P | >
@ 0 71.0 80.9 78.8 57.6 59.6 | 155
@ 1 72.7 82.5 80.0 59.2 61.4 | 146
[©) 2 73.8 83.4 80.6 60.4 63.2 | 139
@ 3 73.7 83.2 80.5 60.2 62.9 | 131
® 4 73.5 82.8 80.1 59.6 62.7 | 122
Table 3. Ablation on the dreaming steps.

indicates that three future predictions are sufficient for tem-
poral dreaming in visual tracking, which is adopted as the
default setting of our DreamTrack.

Different Dreaming Steps. In our default setting, the
proposed DreamTrack predicts the future states of the next
two frames, which aims to complement the temporal mes-
sages with future dynamics. Here we ablate different
dreaming steps to explore the influence, as shown in Tab. 3.
The version with the dreaming step of 0 only predicts the
states of the current frame based on the historical obser-
vations (@), which in fact has no future information while
showing comparable performance with recent SOTA track-
ers. When the dreaming step grows, the performance also
improves and reaches the top with an SUC of 73.8% on La-
SOT that dreams the next 2 frames (®). One interesting
observation is that the dreaming steps of more than 2 can-
not bring more performance gains but degrade the tracking
accuracy. The underlying reason is that the uncertainty of
predicting too far future has exceeded the capacity of the
model, which distracts the tracking localization and leads
to inferior performance (&,® v.s. ®).

Position of Future Dreaming. Our DreamTrack has a
dream-encoder-decoder architecture, which performs future
dreaming before the interaction between the template and
search region in the encoder. This order aims to preserve
the information from original observations and learn the
general environmental dynamics. We further explore the
influence by postponing the dream stage after the encoder,
i.e., encoder-dream-decoder. Tab. 4 shows that late future
dreaming achieves inferior performance compared with the
default version (@ v.s. @). The underlying reason is that the
encoder aims to filter target-irrelevant messages of the cur-
rent frame by interacting with the template, leading to insuf-
ficient environmental dynamics for future dreaming. This
also proves the effectiveness of our design.

Ground-truth Future States. As mentioned in Sec. 3.2
of the main text, we exploit the ground-truth (GT) future
frames as the supervision label of the predicted future states,
which empowers the tracker with the capability of future
dreaming. Then what if using the GT future states instead
of dreaming? We replace the dreamed future states with the
features of GT future frame for inference, which align with
the modeling process of the current frame. The results are
presented in Tab. 5. It shows that the performance with GT
future states surpasses the dreamed one for 1.8% SUC and
1.4% precision of LaSOT (@ v.s. @). This indicates that the
discrepancies still remain between the dreamed future and
the GT one. We leave it for further study to dream a more
realistic future scenario.

Update of Target Query. With the input search region of
each new frame, the target queries will first update the en-
vironmental dynamics with the current observation, which



# | Data Volume

LaSOT [3]

LaSOText [4]

TNL2K [15]

SUC(%) P(%)

SUC(%) P(%)

SUC(%) P(%)

4 |Ground-Truth| LaSOT[3] | LaSOTexts | TNL2K[I5]
Future State [SUC(%) P(%)|SUC(%) P(%)|SUC(%) P(%)

@ X 73.8 80.6| 531 59.8| 604 632

@ v 756 820 | 547 61.8| 622 649

Table 5. Ablation on the ground-truth future states.

# Update of LaSOT [3] LaSOText [4] TNL2K [15]
Target Query | SUC(%) P(%) | SUC(%) P(%)|SUC(%) P(%)

@ X 714 79.1 | 512 582 | 590 604

@ v 738 80.6 | 531 598 | 604 63.2

Table 6. Ablation on the update of target query.

# Reconstruction LaSOT [3] TNL2K [15] | GPU Days
Template Search Region | SUC(%) P(%)|SUC(%) P(%) |for Training

©) X X 7277 79.8 | 59.1 61.7 7.83

@ v X 73.1 80.3 | 598 624 8.74

® X v 738 80.6 | 604 632 9.57

@ v v 741 80.7 | 608 635 10.66

Table 7. Ablation on the reconstruction of the template and search
region in the Future Dreaming module.

are then interacted with encoded features of the search re-
gion to perform Multimodal Prediction. Here we explore
the influence of updating target queries by freezing the pa-
rameters as initialization, i.e., abandoning the historical in-
formation. As shown in Tab. 6, the performance degrades
compared with the default DreamTrack,se (@ v.s. @), prov-
ing the necessity of past experience for a better environmen-
tal understanding. Despite this, @ still demonstrates com-
parable tracking capability, showing the effectiveness of our
design to infer the future with only current observation.

Reconstruction of Template and Search Region. As de-
scribed in Sec. 3.2 of the main text, we only construct the
search region based on the dreamed future states. Here
we further explore the influence of reconstructing the tem-
plate, and the results are presented in Tab. 7. It shows that
the supervision of reconstruction helps learn the environ-
mental dynamics to benefit visual tracking in our default
DreamTrackysg (@ v.s. @). One interesting observation is
that the reconstruction of the search region obtains superior
performance compared with the one to reconstruct the tem-
plate (® v.s. @). This indicates that learning the tracking
scenario of the search region is more helpful in locating the
target compared with dreaming the future template. Recon-
structing both the template and search region achieves the
best performance (®). Considering the increased training
costs and little performance gains (@ v.s. @), we take the
model that only reconstructs the search region as the default
version of our DreamTrack.

Scale of Training Data. The quality of temporal learn-

) 25% 49.0 48.8 | 367 422 | 415 404
©) 50% 65.1 698 | 453 534 | 513 525
® 75% 708 77.0| 502 577 | 567 595
@ 100% 738 80.6| 531 598| 604 632
Table 8. Ablation on the training data volume.
Camera Motion Motion Blur
(0.513,0.759) (0.442,0.723)
Rotation Deformation
(0.485,0.742) (0.528,0.756)
Background Clutter Partial Occlusion
(0.449,0.671) (0.466,0.720)
Viewpoint Change Tlumination Variation
(0.444,0.750) (0.530,0.720)

Scale Variation
(0.494,0.739)

Aspect Ration Change
(0.472,0.729)

Low Resolution
(0.385,0.691)

Full Occlusion
(0.366.0.680)

Out-of-View
(0.416,0.690)

Fast Motion
(0.316,0.638)
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Figure 2. AUC scores of different attributes on LaSOT.

ing is deeply influenced by the training data volume. We
then explore the influence by training our DreamTrackjsg
with different scales of data and the results are presented
in Tab. 8. The default setting for the scale of training data
is noted as “100%”. It shows that as the scale of training
data reduces (i.e., “75%”, “50%” and ‘“25%"), the overall
performance gradually decreases (e.g., 73.8% — 70.8% —
65.1% — 49.0% of SUC on LaSOT), demonstrating that
more data helps improve the model capacity of distinguish-
ing the target in complex scenarios. Notably, even with only
50% of the data, our DreamTrack;s¢ has achieved compara-
ble performance with early transformer-based trackers (e.g.,
TransT [2]), proving the effectiveness of our design.

Attribute Results on LaSOT. With the offered specific
attributes for each video sequence on LaSOT [3] (e.g., Mo-
tion Blur, Deformation, Occlusion), we compare the perfor-
mance under various tracking scenarios, as shown in Fig. 2.
It shows that our DreamTrack,sg is more effective than other
competing trackers on most attributes, particularly in han-
dling scenarios involving Deformation, Full Occlusion and
Partial Occlusion that raise critical challenges in long-term
tracking. This proves the effectiveness of our future dream-
ing to improve tracking under complex scenarios with the
learned environmental dynamics.
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Figure 3. More attention visualization of our DreamTrack w/. and
w/o. dreaming the future. The predictions and ground-truth boxes
are marked in red and green, respectively.

More Activation Analysis and Result Visualization.
We introduce additional visualizations to demonstrate the
enhanced generalization capability in novel situations. As
depicted in Fig. 3, the activation maps without the Future
Dreaming module hardly capture the target area under the
circumstances of occlusion and interference from similar
objects. This proves our claims that insufficient environ-
mental understanding leads to biased target localization and
error accumulation in long-term tracking. By comparison,
the version with the proposed future dreaming forms fo-
cused attention on the target region even though some parts
are occluded (e.g., the second row). It demonstrates en-
hanced adaptability with our design in complex environ-
ments of new frames, which benefits the general perception
of visual object tracking.

We also visualize more results of different trackers as
well as the dreamed future frames under various track-
ing scenarios and object classes. As shown in Fig. 4, the
proposed DreamTrack,se still demonstrates superior dis-
tinguishability under appearance deformation, occlusion,
background clutters and interference with similar objects. It
demonstrates the effectiveness of our History-to-Future ar-
chitecture to benefit tracking with the predicted future states
based on the learned environmental dynamics from past ex-
periences. The dreamed future frames correctly reflect the
motion evolution of tracking scenarios, as well as the tar-
get appearance. Besides future forecasting of the subse-
quent frames, the predicted trajectory also successfully lo-
cates the tracking target of the dreamed frames. This further

I Ground Truth I OreamTrackess I LoRAT:: I ARTrackv2:s

Figure 4. More results visualization of different trackers
and dreamed future frames. The comparison shows that our
DreamTrackse could learn temporal dynamics of complex scenar-
ios and perform robust tracking (e.g., deformation, occlusion and
similar interferences), as well as future dreaming.

proves the effectiveness of our design to enhance the tem-
poral learning with both history and future information and
achieve generalized tracking with future dreaming.
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