Everything to the Synthetic: Diffusion-driven Test-time Adaptation via
Synthetic-Domain Alignment

Supplementary Material

A. Implementation Details

A.l. Baselines.

We choose DDA [17] as our primary competitor since it
is the best-performing publicly available diffusion-driven
TTA method. Same as DDA, we include DiffPure [47] and
MEMO [72] as baselines. We also compare SDA against the
recent SOTA GDA [66] using their paper results. For data
stream sensitivity comparison, we compare SDA with 10
additional traditional TTA methods, including TENT [67],
ROID [39], NOTE [ 18], CoTTA [69], TRIBE [61], BN [41],
UniMIX [65], RoTTA [71], LAME [4] and UniTTA [12].
The results are evaluated across various TTA benchmarks,
including ImageNet-C [24], ImageNet-W [33], CIFAR-10-
C [24] and PASCAL VOC-C [13].

A.2. Settings.

All experiments are conducted with 8 A100 GPUs. For Im-
ageNet variants, we explore ResNet [23], ConvNeXt [37],
and Swin [36] as source models. DiT [49] and ADM [10]
are adopted as conditional and unconditional diffusion mod-
els, respectively. For CIFAR-10-C [24], we use ResNet as
the source model. EDM [28] and I-DDPM [46] are adopted
as conditional and unconditional diffusion models, respec-
tively. For PASCAL VOC-C [13], we use DeepLabv3 [0]
as the source segmenter. Dataset Diffusion [42] and FLUX
schnell [30] are adopted as conditional and unconditional
diffusion models, respectively. For classification tasks via
MLLMs, we use LLaVA 1.5-7b [35] as the source model.
For each task, we generate SOK images with balanced class
labels. For different source models and target domains, the
synthetic data only needs to be generated once. The de-
tailed fine-tuning settings of classifiers and segmenters are
summarized in Tab. 17. For MLLM (LLaVA) fine-tuning,
we follow the default configurations in [35]. Fig. 6 shows
the task format for fine-tuning and evaluating MLLMs.

B. Selection of Timestep for TTA

As aforementioned in Eq. 4, the success of diffusion-driven
data adaptation relies on the selection of a suitable mini-
mum t* that satisfies p$i° ~ p;®. In Fig. 7, we lever-
age FID [25] to measure the domain divergence of p{™ and
p;"® with different timestep t. The results indicate that for
a 1000-step diffusion scheduler and adaptation tasks from
the standard benchmark ImageNet-C [24], diffusion-driven
data adaptation typically requires a ¢t* larger than 500. We

empirically demonstrate that applying such ¢* to diffusion-

What is the class of this image? The options are
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Figure 6. Task format for fine-tuning and evaluating MLLMs.
Given an image, we ask an MLLM to choose the correct image
class from four provided options.
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Figure 7. Fréchet Inception Distance (FID) [25] between p;™ and
pi"8 with different timestep t. We conduct experiments on four

typical adaptation types from ImageNet-C.

driven TTA methods leads to significant misalignment be-
tween the source and synthetic domains, as shown in Tab. 2.
In our experiments, we set the same ¢t* = 500 as our base-
line DDA [17]. Here t* = 500 refers to using half sampling
steps as the whole diffusion scheduler, e.g., for a 100-step
scheduler, the actual sampling step for adaptation is 50.

C. Additional Results

C.1. Conditional and Unconditional Synthetic Do-
main Misalignment on Other Datasets

Beyond Tab. 10, new results on CIFAR-10-C and PASCAL
VOC-C in Tab. 12 indicate the conditional and uncondi-



tional synthetic domain misalignment issue may be signif-
icant for almost all datasets. SDA mitigates misalignment
and therefore improves performance in all settings.

CIFAR-10-C PASCAL VOC-C

DDA (Turget to Uncond. Syn) 65.3 38.6
+ Cond. Generation (source to Cond. Syn) 69.8 (+4.5) 38.8 (+0.2)
+ Uncond. Alignment (cond. Syn to Uncond. Syn), spA ~ 72.4 (+7.1) 39.8 (+1.2)

SDA Component pomain Adaptation Direction

Table 12. SDA mitigates synthetic domain misalignment and im-
proves performance across different datasets.

C.2. Diffusion Model Selection

Besides DiT used in the main paper, we explore more diffu-
sion models pretrained on source data (SiT) and web data
(Stable Diffusion XL) with ConvNeXt-B to indicate the
model insensitivity of SDA.

DDA | SDA (DiT) SDA (SiT) SDA (Stable Diffusion XL)
49.4 |59 (+2.5) 515 (+2.1) 51.9 (+2.5)

Table 13. ImageNet-C accuracy with different diffusion models.

C.3. Generalization to Other Diffusion-driven Data
Adaptation Methods

We additionally integrate SDA with DiffPure in Tab. 14.
The results show consistent improvements.

ConvNeXt-B

DiffPure 32.7 28.9
SDA (with DiffPure) 46.3 (+13.6) 46.3 (+11.7)

Swin-B

Table 14. ImageNet-C accuracy using SDA with DiffPure.

C.4. SDA Performance on Clean ImageNet

SDA does not notably downgrade source model perfor-
mance on the original clean data, as shown in Tab. 15.

ConvNeXt-B  Swin-B

Source Model 83.7 83.4
SDA (Ours)  83.6 (-0.1) 83.2(-0.2)

Table 15. SDA accuracy on ImageNet validation set.

C.5. Time Cost

Analysis on time cost for conditional data generation,
unconditional data alignment, and fine-tuning are listed
in Tab. 16. Two settings are considered: (1) Fine-tuning on
50K images, which consumes more time but achieves bet-
ter performance, and (2) Fine-tuning on 1K images, which
reduces time cost by 50x and maintains comparable perfor-
mance (also see Tab. 11 in our paper). Note that generation
and alignment don’t need to be redone for different models.

Settings ~ Generation Alignment  Fine-tuning Accuracy

50K images ~ 3 hours ~ 6hours ~ 3 minutes 32.5
1K images ~ 4 minutes ~ 8 minutes < 10 seconds  31.9

Table 16. Time cost with 8 A100 GPUs with ResNet-50.

C.6. Detailed Comparisons

We provide detailed comparisons of SDA and baselines
across 15 adaptation domains of ImageNet-C in Tabs. 18
to 21 and across 12 class/domain balance/imbalance set-
tings from the UniTTA benchmark [12] in Tab. 22.



Dataset ‘ ImageNet CIFAR-10 PASCAL VOC
Model ‘ ResNet-50 Swin-T/B & ConvNeXt-T/B ResNet-18 DeepLabv3
optimizer SGD AdamW SGD SGD
base learning rate Se-4 2e-5 Se-2 le-4
weight decay le-4 le-8 le-4 Se-6
optimizer momentum 0.9 51, 82 = 0.9,0.999 0.9 0.9
batch size 512 1024 128 32
training epochs 15 15 15 2500 (iterations)
learning rate schedule step decay at epoch 10 cosine decay step decay at epoch 10 polynomialLR
warmup epochs None 5 None None
warmup schedule N/A linear N/A N/A
conditional diffusion model DiT-XL/2 DiT-XL/2 EDM-VP Dataset Diffusion
conditional sampling steps 250 250 512 100
classifier-free guidance 1.0 1.0 1.0 7.5
unconditional diffusion model ADM ADM I-DDPM FLUX schnell
unconditional sampling steps 50 50 50 25
Table 17. Synthetic-domain model adaptation settings.
> 4} o < &y X Q
%\‘b > &> & Ca '\OQ & o Q & \Q@ g VY \‘b\ O &
& F L FFE S & @ &
Source 39.1 377 388 29.0 11.1 334 347 51.1 434 598 713 412 271 359 54.0 |405
DDA 53.8 492 503 285 262 334 349 494 428 409 679 38.0 43.1 5277 57.1 |445
SDA (Ours) 553 535 53.7 325 31.1 377 383 51.1 438 424 69.7 344 478 583 60.8 |47.4 (+2.9)

Table 18. Comparisons of SDA and baselines across 15 adaptation domains of ImageNet-C. Results are conducted with Swin-B.

S X

& & v & & S X g
By ~ & & S O & & & g & & O AD O ;
& FE F S & E
Source 40.1 39.1 387 256 114 330 312 493 438 419 703 450 225 410 572|393
DDA 556 516 513 247 269 319 323 484 426 343 66.7 399 422 546 59.3 442
SDA (Ours) 56.7 539 53.8 299 320 362 368 49.7 437 364 68.0 39.0 47.1 59.8 62.1 |47.0 (+2.8)

Table 19. Comparisons of SDA and baselines across 15 adaptation domains of ImageNet-C. Results are conducted with ConNeXt-T.

& g 4 & & o & @
¥ & & SRS & & & @ & N > > Ol
& T § F FE e & & & & ¢ ¥
Source 299 282 283 23.1 9.5 244 278 466 363 470 684 345 208 274 50.1 |33.5
DDA 514 466 463 21.0 221 239 279 455 362 405 643 306 404 485 54.2(40.0
SDA (Ours) 524 50.2 50.1 244 265 29.1 324 462 373 38.8 653 26.1 46.1 553 57.2 |42.5 (+2.5)

Table 20. Comparisons of SDA and baselines across 15 adaptation domains of ImageNet-C. Results are conducted with Swin-T.

.%&Q & \&0 oc‘& 5 & & & & \'\\Q%% -6‘2’%\ & 5 Qe %
" %\,% & &@Q Qé} & o a8 <& & <O %@? Qo° {{}fzr Q\A& {O ?,4
Source 6.1 75 6.7 143 7.6 11.8 215 214 162 19.1 551 3.6 145 333 421 [18.7
DDA 469 420 413 13.8 164 12.0 223 268 21.0 17.1 51.1 3.1 36.2 457 502 (29.7
SDA (Ours) 434 432 425 188 21.6 166 274 30.0 22.6 18.1 53.1 3.1 41.0 52.1 534 |32.5(+2.8)

Table 21. Comparisons of SDA and baselines across 15 adaptation domains of ImageNet-C. Results are conducted with ResNet-50.



Class setting i.i.d. and balanced (i,1) non-i.i.d. and balanced (n,1) non-i.i.d. and imbalanced (n,u)

Domain setting (1,1) a4,1) n @b @Guw @ml1) (mu (1) Gl Gu (@™l (nu) ‘
Corresponding setting CoTTA ROID RoTTA - - - - TRIBE - - - - ‘Avg.
Source 18.01 17.95 18.08 17.90 18.34 18.04 18.26 18.40 18.79 18.58 18.80 18.48 ‘ 18.30
TENT [67] 29.42 8.12 128 0.69 047 088 0.68 250 078 0.87 297 1.14 |4.15
ROID [39] 39.33 20.82 149 029 0.16 048 039 824 023 043 1.8 0.63 |6.20
NOTE [18] 8.38 11.82 633 473 3.18 5.00 4.19 751 4.07 459 11.07 495|632
CoTTA [69] 33.13 19.33 4.87 320 267 378 3.67 1030 480 550 7.89 6.29 |8.78
TRIBE [61] 24.12 15.22 1022 738 346 481 401 1128 7.15 629 10.63 5.95 |9.21
BN [41] 30.67 17.13 621 492 485 490 499 1160 7.76 7.775 8.69 8.16 |9.80
UnMIX-TNS [65] 20.36 14.45 20.26 1558 17.33 1543 17.19 21.33 16.72 17.66 14.96 17.62|17.40
RoTTA [71] 32.23 20.09 27.28 19.46 20.35 19.70 20.37 31.26 21.74 22.06 20.22 21.64|23.12
LAME [4] 17.45 17.74 25.52 27.79 28.23 26.48 26.87 24.30 26.56 26.46 25.62 25.61|24.88
UniTTA [12] 21.93 22.00 29.75 33.17 33.58 31.71 31.95 2798 34.32 33.13 31.52 32.42|30.29
DDA [17] 29.89 30.32 29.88 29.94 26.33 29.58 26.28 31.67 31.28 27.29 31.3 28.18|29.33
SDA (Ours) 32.42 32.72 32.34 3250 27.75 32.06 27.88 34.36 34.05 29.06 34.02 29.99 | 31.60 (+2.27)

Table 22. Data stream sensitivity comparison on ImageNet-C [24] under 12 class/domain balance/imbalance settings in the UniTTA
benchmark [12]. Detailed introduction of the settings can be found in [12]. Briefly, ({i, n, 1}, {1, u}) denotes correlation and imbalance
settings, where {i, n, 1} represent i.i.d., non-i.i.d. and continual, respectively, and {1, u} represent balance and imbalance, respectively.
The best results are in bold and the second-best results are underlined.



References

(1]

[2

—

3

—

(4]

[5

—

[6

—_

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars
Mescheder, Andreas Geiger, and Carsten Rother. Aug-
mented reality meets computer vision: Efficient data gen-
eration for urban driving scenes. IJCV, 2018. 3

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
VQA: Visual question answering. In /CCV, 2015. 7
Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mo-
hammad Norouzi, and David J. Fleet. Synthetic data from
diffusion models improves imagenet classification. TMLR,
2023. 3

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca
Bertinetto. Parameter-free online test-time adaptation. In
CVPR,2022. 7,8, 1,4

Goirik Chakrabarty, Manogna Sreenivas, and Soma Biswas.
Santa: Source anchoring network and target alignment for
continual test time adaptation. TMLR, 2023. 7, 8
Liang-Chieh Chen. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint
arXiv:1706.05587,2017. 7, 1

Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.
Learning semantic segmentation from synthetic data: A ge-
ometrically guided input-output adaptation approach. In
CVPR, 2019. 3

MMPreTrain Contributors. Openmmlab’s pre-training tool-
box and benchmark. https://github.com/open-—
mmlab/mmpretrain, 2023. 4

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 3, 4

Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 4, 6, 1
Mario Dobler, Robert A Marsden, and Bin Yang. Robust
mean teacher for continual and gradual test-time adaptation.
In CVPR, 2023. 7, 8

Chaoqun Du, Yulin Wang, Jiayi Guo, Yizeng Han, Jie Zhou,
and Gao Huang. Unitta: Unified benchmark and versa-
tile framework towards realistic test-time adaptation. arXiv
preprint arXiv:2407.20080, 2024. 2,7, 8, 1, 4

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. 1JCV, 2010. 7, |

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi,
Phillip Isola, and Yonglong Tian. Scaling laws of synthetic
images for model training... for now. In CVPR, 2024. 3
Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros.
Test-time training with masked autoencoders. In NeurlPS,
2022. 1,2

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In /CML, 2015. 1

Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shel-
hamer, and Dequan Wang. Back to the source: Diffusion-
driven adaptation to test-time corruption. In CVPR, 2023. 1,
2,3,4,5,6,8

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim,
Jinwoo Shin, and Sung-Ju Lee. Note: Robust continual test-
time adaptation against temporal correlation. In NeurIPS,
2022. 7,8, 1,4

Jiayi Guo, Chaoqun Du, Jiangshan Wang, Huijuan Huang,
Pengfei Wan, and Gao Huang. Assessing a single image in
reference-guided image synthesis. In AAAZ, 2022. 3

Jiayi Guo, Hayk Manukyan, Chenyu Yang, Chaofei
Wang, Levon Khachatryan, Shant Navasardyan, Shiji Song,
Humphrey Shi, and Gao Huang. Faceclip: Facial image-to-
video translation via a brief text description. IEEE Transac-
tions on Circuits and Systems for Video Technology, 2023.
3

Jiayi Guo, Chaofei Wang, You Wu, Eric Zhang, Kai Wang,
Xinggian Xu, Humphrey Shi, Gao Huang, and Shiji Song.
Zero-shot generative model adaptation via image-specific
prompt learning. In CVPR, 2023. 3

Jiayi Guo, Xingqgian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang,
Manushree Vasu, Shiji Song, Gao Huang, and Humphrey
Shi. Smooth diffusion: Crafting smooth latent spaces in dif-
fusion models. In CVPR, 2024. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 6, 1

Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In ICLR, 2019. 5,6, 1, 4

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 1

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2, 3, 4

Gao Huang. Dynamic neural networks: advantages and chal-
lenges. National Science Review, 2024. 7

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In NeurIPS, 2022. 6, 1

Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu,
et al. Universal source-free domain adaptation. In CVPR,
2020. 1

Black Forest Labs. Flux.
blackforestlabs.ai/,2024.2,7,1
Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In CVPR, 2020. |

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical do-
main adaptation. In /ICLR Workshops, 2017. 1,2

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas,
Tal Hassner, Cristian Canton Ferrer, Chenliang Xu, and
Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in
multiples where mitigating one amplifies others. In CVPR,
2023. 6, 1

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In /ICML, 2020. 1

https : / /


https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain
https://blackforestlabs.ai/
https://blackforestlabs.ai/

(35]

[36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

(45]

[46]

(47]

(48]

[49]

[50]

[51]

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2024. 7, 1

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV,2021. 4,6, 1

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 4, 6, 1

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. In NeurIPS, 2018. 1

Robert A Marsden, Mario Débler, and Bin Yang. Univer-
sal test-time adaptation through weight ensembling, diversity
weighting, and prior correction. In WACV, 2024. 7, 8, 1, 4
Arthur Moreau, Nathan Piasco, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Arnaud de La Fortelle. Lens: Localization
enhanced by nerf synthesis. In CoRL, 2022. 3

Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020. 7,8, 1,4

Quang Nguyen, Truong Vu, Anh Tran, and Khoi Nguyen.
Dataset diffusion: Diffusion-based synthetic data generation
for pixel-level semantic segmentation. In NeurIPS, 2023. 7,
1

Zanlin Ni, Yulin Wang, Renping Zhou, Jiayi Guo, Jinyi Hu,
Zhiyuan Liu, Shiji Song, Yuan Yao, and Gao Huang. Re-
visiting non-autoregressive transformers for efficient image
synthesis. In CVPR, 2024. 3

Zanlin Ni, Yulin Wang, Renping Zhou, Yizeng Han, Jiayi
Guo, Zhiyuan Liu, Yuan Yao, and Gao Huang. Enat: Re-
thinking spatial-temporal interactions in token-based image
synthesis. In NeurlIPS, 2024.

Zanlin Ni, Yulin Wang, Renping Zhou, Rui Lu, Jiayi Guo,
Jinyi Hu, Zhiyuan Liu, Yuan Yao, and Gao Huang. Adanat:
Exploring adaptive policy for token-based image generation.
In ECCV, 2024. 3

Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 6,
1

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Anima Anandkumar. Diffusion models for ad-
versarial purification. In ICML, 2022. 1,2, 3,5, 6
Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. In ICML, 2022. 7,
8

William Peebles and Saining Xie. Scalable diffusion models
with transformers. In ICCV, 2023. 2, 3, 6, |

Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko.
Learning deep object detectors from 3d models. In ICCV,
2015. 3

Mihir Prabhudesai, Tsung-Wei Ke, Alexander Cong Li,
Deepak Pathak, and Katerina Fragkiadaki. Diffusion-tta:
Test-time adaptation of discriminative models via generative
feedback. In NeurIPS, 2023. 2

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

(62]

[63]

[64]

[65]

[66]

Yifan Pu, Zhuofan Xia, Jiayi Guo, Dongchen Han, Qixiu Li,
Duo Li, Yuhui Yuan, Ji Li, Yizeng Han, Shiji Song, et al. Ef-
ficient diffusion transformer with step-wise dynamic atten-
tion mediators. In ECCV, 2024. 2

Yifan Pu, Yiming Zhao, Zhicong Tang, Ruihong Yin, Haox-
ing Ye, Yuhui Yuan, Dong Chen, Jianmin Bao, Sirui Zhang,
Yanbin Wang, et al. Art: Anonymous region transformer
for variable multi-layer transparent image generation. arXiv
preprint arXiv:2502.18364, 2025. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3
German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR, 2016. 3

Artem Rozantsev, Vincent Lepetit, and Pascal Fua. On ren-
dering synthetic images for training an object detector. Com-
puter Vision and Image Understanding, 2015. 3

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and
Percy Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-
case generalization. In /CLR, 2020. 2

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In CVPR, 2018. 1

Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain,
Ser Nam Lim, and Rama Chellappa. Learning from synthetic
data: Addressing domain shift for semantic segmentation. In
CVPR, 2018. 3

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 5,7

Yongyi Su, Xun Xu, and Kui Jia. Towards real-world test-
time adaptation: Tri-net self-training with balanced normal-
ization. In AAAI 2024. 7,8, 1,4

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
ICML, 2020. 1,2

Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina Katabi, Dilip
Krishnan, and Phillip Isola. Learning vision from models
rivals learning vision from data. In CVPR, 2024. 3
Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and
Dilip Krishnan. Stablerep: Synthetic images from text-to-
image models make strong visual representation learners. In
NeurIPS, 2024. 3

Devavrat Tomar, Guillaume Vray, Jean-Philippe Thiran, and
Behzad Bozorgtabar. Un-mixing test-time normalization
statistics: Combatting label temporal correlation. arXiv
preprint arXiv:2401.08328, 2024. 8, 1,4

Yun-Yun Tsai, Fu-Chen Chen, Albert YC Chen, Junfeng
Yang, Che-Chun Su, Min Sun, and Cheng-Hao Kuo. Gda:
Generalized diffusion for robust test-time adaptation. CVPR,
2024. 1,2,3,5,6



[67]

[68]

[69]

[70]

[71]

[72]

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In /ICLR, 2021. 1,2,5,7, 8, 4
Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma,
Nisha Huang, Yuxin Chen, Xiu Li, and Ying Shan. Tam-
ing rectified flow for inversion and editing. arXiv preprint
arXiv:2411.04746, 2024. 2

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual test-time domain adaptation. In CVPR, 2022. 1,2, 7,
8,4

Lin Yen-Chen, Pete Florence, Jonathan T Barron, Tsung-Yi
Lin, Alberto Rodriguez, and Phillip Isola. Nerf-supervision:
Learning dense object descriptors from neural radiance
fields. In ICRA, 2022. 3

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time
adaptation in dynamic scenarios. In CVPR, 2023. 7,8, 1, 4
Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo:
Test time robustness via adaptation and augmentation. In
NeurlIPS,2022. 1,2,5,6



	Introduction
	Related Work
	Methodology
	Background
	Source-Synthetic Domain Misalignment
	Synthetic-Domain Alignment Framework
	Model Adaptation via Mix of Diffusion

	Experiments
	Main Results on ImageNet Classifiers
	Scalability to Other Datasets, Tasks and Models
	Analysis
	Ablation Studies

	Conclusion
	Implementation Details
	Baselines.
	Settings.

	Selection of Timestep for TTA
	Additional Results
	Conditional and Unconditional Synthetic Domain Misalignment on Other Datasets
	Diffusion Model Selection
	Generalization to Other Diffusion-driven Data Adaptation Methods
	SDA Performance on Clean ImageNet
	Time Cost
	Detailed Comparisons


