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7. Ablation Study
Effectiveness of Adapters. The shading adapter maps
shading hints to the extrinsic feature subspace, while the
reference adapter maps the reference to the intrinsic feature
subspace. The combination of features from these differ-
ent subspaces enables various effects, such as controlling
lighting magnitude, maintaining identity, and enhancing im-
age generation quality. To investigate the effectiveness of
these adapters, we conducted an ablation study with differ-
ent adapter combinations.

First, we retain only the reference adapter, as shown in
Table 5 under the row Fr. In this case, the lighting error is
significant (LE is large), while identity preservation is ex-
cellent (ID is high). This indicates that the model preserves
intrinsic features well but fails to capture extrinsic features.
Conversely, when we retain only the shading adapter, as
shown in the row Fs, the lighting error is minimal (LE is
small), but identity preservation is almost nonexistent (ID
approaches 0). This suggests that the model transfers extrin-
sic features effectively while neglecting intrinsic features.

When both adapters are retained, we observe significant
improvements in intrinsic feature preservation compared to
using only the shading adapter and significant improve-
ments in extrinsic feature transfer compared to using only
the reference adapter. Moreover, the image quality also
achieves its optimal level under this configuration.
Effectiveness of Guidance Strength. This method utilizes
a multi-condition classifier-free guidance approach to con-
trol the lighting magnitude through the classifier-free guid-
ance mechanism [18]. The strength of the guidance, repre-
sented by ω, directly affects the lighting intensity.

To evaluate the impact of ω, we conduct an ablation
study with varying values, as shown in Table 6. As ω in-
creases, the lighting effect improves (LE decreases), but
identity preservation deteriorates (ID decreases). Notably,
image quality reaches its peak at ω = 4. However, setting
ω too high can lead to a decline in image quality. Therefore,
lighting effects, identity preservation, and image quality can
be balanced by appropriately adjusting the value of ω.

8. Motion Alignment
As shown in Fig. 2, during the relighting and animation
stages, we use a video to animate the reference image, en-
suring that the lighting effect of the relit portrait is consis-
tent with that of the target lighting. In the inference stage,
since the portrait in the video and the reference image come

Table 5. Quantitative comparison of ablation study with different
adapter combinations on the HDTF dataset. Fr denotes using only
the reference adapter, Fs denotes using only the shading adapter,
and Fs + Fr represents using both adapters. The best scores are
highlighted in bold, and the second-best are underlined.

Methods LE→ ID↑ IQ↑ FID→
Fr 1.071 0.802 1.662 35.61
Fs 0.582 0.028 1.248 56.63

Fs + Fr 0.738 0.585 3.034 37.46

Table 6. Quantitative comparison of the ablation study on the im-
pact of different guidance strengths ω on lighting (LE), identity
(ID), and image quality (IQ) on the HDTF dataset. From left to
right, each metric is shown as it changes with increasing ω. The
best scores are highlighted in bold, and the second-best are under-
lined.

Methods ω = 2 ω = 4 ω = 6 ω = 8

LE→ 1.079 0.809 0.744 0.681
ID↑ 0.728 0.603 0.563 0.503
IQ↑ 2.611 2.988 2.954 2.856

from different identities, directly using the shading hints
of the portrait from the video to animate the reference im-
age would cause the generated portrait to resemble the one
from the driving video. This leads to identity leakage dur-
ing animation, degrading the animation quality. We propose
two motion alignment methods: (1) a relative displacement-
based motion alignment method and (2) a portrait scale
consistency-based motion alignment method.
Relative Displacement-based Motion Alignment. This
motion alignment method is designed to use the refer-
ence image as the first frame, with subsequent motions
based on this initial frame. The motion guidance for
the reference frame is achieved by leveraging the rela-
tive displacement between consecutive frames in the driv-
ing video. First, we use DECA to extract the pose se-
quence P = {pv1, pv2, . . . , pvn} and the expression sequence
E = {ev1, ev2, . . . , evn} from each frame of the driving video,
along with the pose p

R and shape s
R from the reference

image. Next, we calculate the relative pose offsets !P =
{0, pv2 ↓ p

v

1, . . . , p
v

n
↓ p

v

1} for each frame with respect to
the first frame. Using the reference image’s pose p

R as
the base pose, we then apply these relative offsets to ob-
tain an aligned pose sequence Palign = {pR, pR + (pv2 ↓
p
v

1), . . . , p
R + (pv

n
↓ p

v

1)}. Finally, we combine the expres-
sion sequence E with the reference image’s shape s

R and
the aligned pose sequence Palign. These parameters are



then input into Eq. 3 to obtain FLAME(sR,Palign
,E),

which, along with the spherical harmonic lighting coeffi-
cients l from the target lighting, is used to render the shad-
ing hints for each frame.
Portrait Scale Consistency-based Motion Alignment.
The relative displacement-based alignment method relies on
using the reference image as the base frame for relative mo-
tion. However, this approach does not ensure perfect spatial
alignment between the pose of the generated portrait and
the driving video. To address this, we propose an alterna-
tive motion alignment method aimed at achieving perfect
alignment between the generated portrait’s pose and that of
the driving video. Specifically, we first use DECA to ex-
tract the pose sequence P = {pv1, pv2, . . . , pvn} and the ex-
pression sequence E = {ev1, ev2, . . . , evn} from each frame
of the driving video, along with the shape s

R from the ref-
erence image. These parameters are then input into Eq. 3 to
compute FLAME(sR,P,E). Combined with the spheri-
cal harmonic lighting coefficients l from the target lighting,
this process renders the shading hints for each frame.

9. Shading and Reference Adapter Network
Architecture

As shown in Fig. 8, the network architecture of the shading
adapter and reference adapter is illustrated. These two net-
works map shading hints and the reference image into the
extrinsic feature subspace and intrinsic feature subspace of
SVD’s feature space, respectively. As depicted in Fig. 2,
the two features are fused with the features from the first
convolutional layer of SVD. Therefore, the shading hints
and reference image must match the spatial dimensions and
channel count of the output from SVD’s first convolutional
layer. To achieve this, we designed the network structure
shown in Fig. 8.

Moreover, since SVD is designed for video sequence
generation, the output dimensions of its first layer include
an additional temporal dimension F , resulting in an out-
put shape of B ↔ F ↔ C ↔ H ↔ W . Accordingly, the in-
put to the shading adapter is a sequence of shading hints
with dimensions B ↔ F ↔ C ↔H ↔W . For the reference
image, which consists of a single frame with dimensions
B ↔ 1 ↔ C ↔H ↔W , we duplicate the reference F times
to obtain dimensions B ↔ F ↔C ↔H ↔W before feeding
it into the reference adapter.

10. Long Video Sequence Generation
Since our model is based on the SVD backbone, which is
limited to generating video sequences of 16 frames at a
time, we tackle the challenge of animating portrait videos
of arbitrary length by utilizing the diffusion model sam-
pling method proposed in [59]. To ensure smooth transi-
tions between consecutive video segments, we implement
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Figure 8. Network architecture of the shading adapter and refer-
ence adapter, where k denotes the kernel size and s denotes the
stride. These two networks have the same structure but do not
share weights and are updated alongside SVD during the training
phase.

a 6-frame overlap strategy. In our experiments, we employ
DDIM with 25 sampling steps and set the default guidance
weight ω to 4.5. For a 100-frame video, this method takes
approximately two minutes and 10 GB of VRAM to per-
form inference on an NVIDIA 4090 GPU.


