MMRL: Multi-Modal Representation Learning for Vision-Language Models

Supplementary Material

A. Implementation Details

We follow prior studies [17, 47–49, 55–57] and adopt a 16-shot learning setting across all experiments, except for the few-shot learning tasks. The ViT-B/16[8] variant of the CLIP model serves as the visual backbone for all experimental setups. Hand-crafted text prompts from prior methods[34, 52, 56] are utilized and described in detail in Tab. 7. Optimization is performed using the AdamW optimizer with an initial learning rate of 0.001. All our models are trained with mix-precision for speeding up. For the larger ImageNet dataset, we employ a batch size of 32, while a batch size of 4 is used for all other datasets. Training on ImageNet for the base-to-novel generalization task spans 5 epochs, whereas training on the remaining datasets is conducted over 10 epochs. For cross-dataset evaluation and domain generalization tasks, we perform training for a single epoch on ImageNet. In the few-shot learning tasks, training is carried out for 5 epochs on ImageNet and 50 epochs for other datasets. The average accuracy is reported over three independent runs, with all experiments executed on a single NVIDIA RTX 4090 GPU.

Representation tokens are initialized from a zero-mean Gaussian distribution with a standard deviation of 0.02. We set J = 6, integrating the representation tokens beginning at the 6-th transformer layer. The dimension of the representation space, d_r , is set to 2048 for EuroSAT and 512 for all other datasets. Note that since the d_r setting for EuroSAT differs from other datasets, in the d_r ablation experiments we fix d_r for EuroSAT to 2048 while adjusting d_r on the other datasets. The number of representation tokens, K, is configured to 5. The parameter α is fixed at 0.7, and the details regarding the configuration of λ are provided in Tab. 8.

B. Dataset Details

Details of 14 datasets are shown in Tab. 7.

C. Computational Cost

Table 6 summarizes the learnable parameters, training time per image, total training duration, inference speed (measured in frames per second, FPS, with a batch size of 100), and the final HM metric for each approach. Our proposed model, MMRL, demonstrates a compelling balance of computational efficiency and performance. The key observations are as follows:

Models incorporating multimodal interaction mechanisms (e.g., MaPLe, MMA, and MMRL) generally involve a higher parameter count compared to models with-

out such mechanisms.

- Both MMRL and the prior MMA approach exhibit significantly faster training speed, thereby reducing overall computational costs. While MaPLe and PromptSRC achieve higher inference speeds, their training durations are relatively longer. Notably, MMRL offers faster inference compared to MMA and MetaPrompt.
- To assess the performance of MMRL under constrained computational resources, we reduced the dimensionality of the representation space from 512 to 32. In this configuration, MMRL achieves a parameter count comparable to that of MMA, while still significantly outperforming the previous state-of-the-art model.

Table 6. All methods were trained on a single NVIDIA RTX 4090 GPU using the ImageNet dataset. Each model was implemented with publicly available code and default configurations as described in their respective papers [17, 18, 46, 47, 49, 53]. 'V-L' denotes vision-language interaction, indicating that efficient fine-tuning incorporates interactions between visual and textual modalities before prediction. 'V, L' signifies separate fine-tuning of each modality without inter-modal interaction before prediction, while 'L' refers to fine-tuning limited to the textual modality alone. 'Train time' is reported as both time per image and the total duration for training the full dataset(16-shots), while 'FPS (100 BS)' indicates frames per second with a batch size of 100 during inference.

Method	Modality	Params (learnable)	Train time (ms/image)	Train time (minute/all)	FPS (100 BS)	НМ
MaPLe	V-L	3.555M	39.5	26.4	1757.6	78.55
PromptSRC	V,L	0.046M	40.0	106.8	1764.2	79.97
ProVP	v	0.147M	4.4	107.2	928.9	78.76
MetaPrompt	V,L	0.031M	30.7	32.8	659.8	79.09
TCP	L	0.332M	5.3	17.7	950.6	79.51
MMA	V-L	0.675M	2.2	1.5	688.5	79.87
MMRL	V-L	4.992M	5.3	3.6	762.4	81.20
MMRL*	V-L	0.689M	5.3	3.6	767.8	80.84

D. Ablation Analysis on λ

As shown in Tab. 8, increasing the value of λ generally improves performance, with the optimal or near-optimal results typically observed when λ is set between 4 and 6 across most datasets. Notably, as λ continues to increase, its impact on model performance within the same dataset diminishes, indicating reduced sensitivity to variations in λ . This trend suggests that the model becomes more robust and less reliant on precise tuning of λ at higher values.

Table 7. Summary of the 14 datasets.

Dataset	Classes	Train	Val	Test	Description	Prompt
ImageNet	1000	1.28M	~	50000	Recognition of generic objects	"a photo of a [CLASS]."
Caltech101	100	4128	1649	2465	Recognition of generic objects	"a photo of a [CLASS]."
OxfordPets	37	2944	736	3669	Fine-grained classification of pets	"a photo of a [CLASS], a type of pet."
StanfordCars	196	6509	1635	8041	Fine-grained classification of cars	"a photo of a [CLASS]."
Flowers102	102	4093	1633	2463	Fine-grained classification of flowers	"a photo of a [CLASS], a type of flower."
Food101	101	50500	20200	30300	Fine-grained classification of foods	"a photo of [CLASS], a type of food."
FGVCAircraft	100	3334	3333	3333	Fine-grained classification of aircrafts	"a photo of a [CLASS], a type of aircraft."
SUN397	397	15880	3970	19850	Scene classification	"a photo of a [CLASS]."
DTD	47	2820	1128	1692	Texture classification	"[CLASS] texture."
EuroSAT	10	13500	5400	8100	Land use & cover classification with satellite images	"a centered satellite photo of [CLASS]."
UCF101	101	7639	1898	3783	Action recognition	"a photo of a person doing [CLASS]."
ImageNetV2	1,000	~	~	10,000	New test data for ImageNet	"a photo of a [CLASS]."
ImageNet-Sketch	1,000	\sim	\sim	50,889	Sketch-style images of ImageNet classes	"a photo of a [CLASS]."
ImageNet-A	200	\sim	\sim	7,500	Natural adversarial examples of 200 ImageNet classes	"a photo of a [CLASS]."
ImageNet-R	200	\sim	\sim	30,000	Renditions of 200 ImageNet classes	"a photo of a [CLASS]."

Table 8. Ablation on λ across 11 datasets, with results evaluated using the harmonic mean (HM) metric.

α	ImageNet	Caltech101	OxfordPets	StanfordCars	Flowers102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101
0.0	74.01	95.97	96.35	76.00	84.42	90.10	38.52	79.67	68.21	82.65	81.63
0.01	74.07	96.12	96.39	75.95	84.82	90.23	37.87	79.85	67.73	87.21	82.11
0.1	74.23	96.25	96.49	76.32	84.81	90.53	38.66	80.23	69.79	83.21	82.91
0.2	74.38	96.40	96.74	76.67	85.31	90.61	39.27	80.25	70.58	82.68	82.70
0.5	74.45	96.68	96.54	77.09	85.74	90.86	40.37	80.61	72.67	82.87	83.05
3.0	74.09	96.59	96.51	77.72	86.65	90.98	40.48	81.10	73.54	77.95	83.89
4.0	74.04	96.62	96.55	77.73	86.78	90.98	40.66	81.14	73.75	77.27	83.45
5.0	73.93	96.62	96.60	77.86	86.42	91.03	40.42	81.07	73.69	78.05	83.84
6.0	73.83	96.61	96.66	78.05	86.48	91.00	41.15	81.20	73.82	75.23	83.68
7.0	73.78	96.62	96.58	78.06	86.53	90.95	40.88	81.10	73.65	75.85	83.55
10.0	73.68	96.64	96.56	77.86	86.46	91.00	41.01	80.93	73.68	77.61	83.38

Table 9. Ablation on different regularization strategies.

Regularization	Base	Novel	HM
Cosine	85.68	77.16	81.20
L1	85.46	76.03	80.47
MSE	85.13	74.62	79.53

E. Ablation Analysis on Regularization Strategies

We investigate the impact of various regularization strategies aimed at maximizing the similarity between class token features and frozen CLIP features to retain pre-trained knowledge. The results, summarized in Tab. 9, indicate that cosine regularization achieves the best performance. In contrast, both L1 and MSE losses lead to performance degradation, with MSE causing a significant decline. This result can be attributed to the more relaxed and flexible constraints of cosine regularization, enabling the class token to preserve generalizability while effectively capturing taskspecific knowledge.

F. Few-Shot Learning

Tabs. 10 and 11 provide detailed comparisons of MMRL and prior state-of-the-art methods on few-shot learning across 11 datasets. MMRL achieves the highest average performance across all shots. Note that the MMA results are reproduced from the open-source code, as the original paper does not report results for this experiment.

Dataset	Method	1 shot	2 shots	4 shots	8 shots	16 shots
	Linear probe CLIP	45.83	57.98	68.01	74.47	78.79
	CoOp	67.56	70.65	74.02	76.98	79.89
	CoCoOp	66.79	67.65	71.21	72.96	74.90
Average	MaPLe	69.27	72.58	75.37	78.89	81.79
	PromptSRC	72.32	75.29	78.35	80.69	82.87
	MMA	69.28	72.08	76.38	79.57	82.76
	MMRL (Ours)	72.67	75.90	79.20	81.47	84.34
	Linear probe CLIP	32.13	44.88	54.85	62.23	67.31
	CoOp	66.33	67.07	68.73	70.63	71.87
	CoCoOp	69.43	69.78	70.39	70.63	70.83
ImageNet	MaPLe	62.67	65.10	67.70	70.30	72.33
-	PromptSRC	68.13	69.77	71.07	72.33	73.17
	MMA	69.17	70.37	71.00	71.77	73.13
	MMRL (Ours)	69.00	70.30	71.40	72.33	73.40
	Linear probe CLIP	79.88	89.01	92.05	93.41	95.43
	CoOp	92.60	93.07	94.40	94.37	95.57
Caltech101	CoCoOp	93.83	94.82	94.98	95.04	95.16
	MaPLe	92.57	93.97	94.43	95.20	96.00
	PromptSRC	93.67	94.53	95.27	95.67	96.07
	MMA	92.90	94.00	94.33	95.37	96.33
	MMRL (Ours)	94.17	94.83	96.03	96.27	97.13
	Linear probe CLIP	44.06	58.37	71.17	78.36	85.34
	СоОр	90.37	89.80	92.57	91.27	91.87
	CoCoOp	91.27	92.64	92.81	93.45	93.34
OxfordPets	MaPLe	89.10	90.87	91.90	92.57	92.83
	PromptSRC	92.00	92.50	93.43	93.50	93.67
	MMA	91.23	91.97	92.23	92.77	93.23
	MMRL (Ours)	90.87	91.57	92.57	93.03	93.83
	Linear probe CLIP	35.66	50.28	63.38	73.67	80.44
	CoOp	67.43	70.50	74.47	79.30	83.07
	CoCoOp	67.22	68.37	69.39	70.44	71.57
StanfordCars	MaPLe	66.60	71.60	75.30	79.47	83.57
	PromptSRC	69.40	73.40	77.13	80.97	83.83
	MMA	67.87	71.77	76.50	81.40	85.70
	MMRL (Ours)	68.70	72.93	78.17	82.57	86.43
	Linear probe CLIP	69.74	85.07	92.02	96.10	97.37
Flowers102	CoOp	77.53	87.33	92.17	94.97	97.07
	CoCoOp	72.08	75.79	78.40	84.30	87.84
	MaPLe	83.30	88.93	92.67	95.80	97.00
	PromptSRC	85.93	91.17	93.87	96.27	97.60
	MMA	83.60	90.30	93.00	95.97	97.97
	MMRL (Ours)	85.97	91.20	94.60	96.60	98.40

Table 10. Comparison of MMRL with previous state-of-the-art methods on few-shot learning across 11 datasets.

Dataset	Method	1 shot	2 shots	4 shots	8 shots	16 shots
	Linear probe CLIP	43.96	61.51	73.19	79.79	82.90
	CoOp	84.33	84.40	84.47	82.67	84.20
	CoCoOp	85.65	86.22	86.88	86.97	87.25
Food101	MaPLe	80.50	81.47	81.77	83.60	85.33
	PromptSRC	84.87	85.70	86.17	86.90	87.50
	MMA	83.03	82.50	82.13	83.00	84.57
	MMRL (Ours)	84.87	85.53	85.77	86.33	87.03
	Linear probe CLIP	19.61	26.41	32.33	39.35	45.36
	CoOp	21.37	26.20	30.83	39.00	43.40
	CoCoOp	12.68	15.06	24.79	26.61	31.21
FGVCAircraft	MaPLe	26.73	30.90	34.87	42.00	48.40
	PromptSRC	27.67	31.70	37.47	43.27	50.83
	MMA	28.73	31.90	37.57	44.83	52.70
	MMRL (Ours)	28.53	34.23	40.47	48.07	57.60
	Linear probe CLIP	41.58	53.70	63.00	69.08	73.28
	CoOp	66.77	66.53	69.97	71.53	74.67
SUN397	CoCoOp	68.33	69.03	70.21	70.84	72.15
	MaPLe	64.77	67.10	70.67	73.23	75.53
	PromptSRC	69.67	71.60	74.00	75.73	77.23
	MMA	64.00	67.17	69.97	72.30	74.63
	MMRL (Ours)	68.90	71.53	73.93	76.00	77.70
	Linear probe CLIP	34.59	40.76	55.71	63.46	69.96
	CoOp	50.23	53.60	58.70	64.77	69.87
	CoCoOp	48.54	52.17	55.04	58.89	63.04
DTD	MaPLe	52.13	55.50	61.00	66.50	71.33
	PromptSRC	56.23	59.97	65.53	69.87	72.73
	MMA	52.27	56.90	63.93	67.97	73.47
	MMRL (Ours)	56.37	61.37	67.87	71.60	75.30
	Linear probe CLIP	49.23	61.98	77.09	84.43	87.21
	CoOp	54.93	65.17	70.80	78.07	84.93
	CoCoOp	55.33	46.74	65.56	68.21	73.32
EuroSAT	MaPLe	71.80	78.30	84.50	87.73	92.33
	PromptSRC	73.13	79.37	86.30	88.80	92.43
	MMA	55.07	59.80	79.40	86.47	92.37
	MMRL (Ours)	76.00	82.87	87.67	88.73	93.37
	Linear probe CLIP	53.66	65.78	73.28	79.34	82.11
	CoOp	71.23	73.43	77.10	80.20	82.23
	CoCoOp	70.30	73.51	74.82	77.14	78.14
UCF101	MaPLe	71.83	74.60	78.47	81.37	85.03
	PromptSRC	74.80	78.50	81.57	84.30	86.47
	MMA	74.17	76.17	80.10	83.43	86.30
	MMRL (Ours)	75.97	78.50	82.67	84.67	87.60

Table 11. Comparison of MMRL with previous state-of-the-art methods on few-shot learning across 11 datasets.