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A. Implementation Details

We follow prior studies[17, 47–49, 55–57] and adopt a
16-shot learning setting across all experiments, except for
the few-shot learning tasks. The ViT-B/16[8] variant of
the CLIP model serves as the visual backbone for all ex-
perimental setups. Hand-crafted text prompts from prior
methods[34, 52, 56] are utilized and described in detail in
Tab. 7. Optimization is performed using the AdamW opti-
mizer with an initial learning rate of 0.001. All our mod-
els are trained with mix-precision for speeding up. For
the larger ImageNet dataset, we employ a batch size of 32,
while a batch size of 4 is used for all other datasets. Training
on ImageNet for the base-to-novel generalization task spans
5 epochs, whereas training on the remaining datasets is con-
ducted over 10 epochs. For cross-dataset evaluation and do-
main generalization tasks, we perform training for a single
epoch on ImageNet. In the few-shot learning tasks, training
is carried out for 5 epochs on ImageNet and 50 epochs for
other datasets. The average accuracy is reported over three
independent runs, with all experiments executed on a single
NVIDIA RTX 4090 GPU.

Representation tokens are initialized from a zero-mean
Gaussian distribution with a standard deviation of 0.02. We
set J = 6, integrating the representation tokens beginning at
the 6-th transformer layer. The dimension of the represen-
tation space, dr, is set to 2048 for EuroSAT and 512 for all
other datasets. Note that since the dr setting for EuroSAT
differs from other datasets, in the dr ablation experiments
we fix dr for EuroSAT to 2048 while adjusting dr on the
other datasets. The number of representation tokens, K, is
configured to 5. The parameter α is fixed at 0.7, and the de-
tails regarding the configuration of λ are provided in Tab. 8.

B. Dataset Details

Details of 14 datasets are shown in Tab. 7.

C. Computational Cost

Table 6 summarizes the learnable parameters, training time
per image, total training duration, inference speed (mea-
sured in frames per second, FPS, with a batch size of 100),
and the final HM metric for each approach. Our proposed
model, MMRL, demonstrates a compelling balance of com-
putational efficiency and performance. The key observa-
tions are as follows:
• Models incorporating multimodal interaction mecha-

nisms (e.g., MaPLe, MMA, and MMRL) generally in-
volve a higher parameter count compared to models with-

out such mechanisms.
• Both MMRL and the prior MMA approach exhibit sig-

nificantly faster training speed, thereby reducing over-
all computational costs. While MaPLe and PromptSRC
achieve higher inference speeds, their training durations
are relatively longer. Notably, MMRL offers faster infer-
ence compared to MMA and MetaPrompt.

• To assess the performance of MMRL under constrained
computational resources, we reduced the dimensionality
of the representation space from 512 to 32. In this config-
uration, MMRL achieves a parameter count comparable
to that of MMA, while still significantly outperforming
the previous state-of-the-art model.

Table 6. All methods were trained on a single NVIDIA RTX
4090 GPU using the ImageNet dataset. Each model was imple-
mented with publicly available code and default configurations
as described in their respective papers [17, 18, 46, 47, 49, 53].
‘V-L’ denotes vision-language interaction, indicating that efficient
fine-tuning incorporates interactions between visual and textual
modalities before prediction. ‘V, L’ signifies separate fine-tuning
of each modality without inter-modal interaction before predic-
tion, while ‘L’ refers to fine-tuning limited to the textual modality
alone. ‘Train time’ is reported as both time per image and the to-
tal duration for training the full dataset(16-shots), while ‘FPS (100
BS)’ indicates frames per second with a batch size of 100 during
inference.

Method Modality
Params Train time Train time FPS

HM
(learnable) (ms/image) (minute/all) (100 BS)

MaPLe V-L 3.555M 39.5 26.4 1757.6 78.55
PromptSRC V,L 0.046M 40.0 106.8 1764.2 79.97
ProVP V 0.147M 4.4 107.2 928.9 78.76
MetaPrompt V,L 0.031M 30.7 32.8 659.8 79.09
TCP L 0.332M 5.3 17.7 950.6 79.51
MMA V-L 0.675M 2.2 1.5 688.5 79.87

MMRL V-L 4.992M 5.3 3.6 762.4 81.20
MMRL* V-L 0.689M 5.3 3.6 767.8 80.84

D. Ablation Analysis on λ

As shown in Tab. 8, increasing the value of λ generally im-
proves performance, with the optimal or near-optimal re-
sults typically observed when λ is set between 4 and 6
across most datasets. Notably, as λ continues to increase,
its impact on model performance within the same dataset
diminishes, indicating reduced sensitivity to variations in λ.
This trend suggests that the model becomes more robust and
less reliant on precise tuning of λ at higher values.



Table 7. Summary of the 14 datasets.

Dataset Classes Train Val Test Description Prompt

ImageNet 1000 1.28M ∼ 50000 Recognition of generic objects “a photo of a [CLASS].”
Caltech101 100 4128 1649 2465 Recognition of generic objects “a photo of a [CLASS].”
OxfordPets 37 2944 736 3669 Fine-grained classification of pets “a photo of a [CLASS], a type of pet.”
StanfordCars 196 6509 1635 8041 Fine-grained classification of cars “a photo of a [CLASS].”
Flowers102 102 4093 1633 2463 Fine-grained classification of flowers “a photo of a [CLASS], a type of flower.”
Food101 101 50500 20200 30300 Fine-grained classification of foods “a photo of [CLASS], a type of food.”
FGVCAircraft 100 3334 3333 3333 Fine-grained classification of aircrafts “a photo of a [CLASS], a type of aircraft.”
SUN397 397 15880 3970 19850 Scene classification “a photo of a [CLASS].”
DTD 47 2820 1128 1692 Texture classification “[CLASS] texture.”
EuroSAT 10 13500 5400 8100 Land use & cover classification with satellite images “a centered satellite photo of [CLASS].”
UCF101 101 7639 1898 3783 Action recognition “a photo of a person doing [CLASS].”

ImageNetV2 1,000 ∼ ∼ 10,000 New test data for ImageNet “a photo of a [CLASS].”
ImageNet-Sketch 1,000 ∼ ∼ 50,889 Sketch-style images of ImageNet classes “a photo of a [CLASS].”
ImageNet-A 200 ∼ ∼ 7,500 Natural adversarial examples of 200 ImageNet classes “a photo of a [CLASS].”
ImageNet-R 200 ∼ ∼ 30,000 Renditions of 200 ImageNet classes “a photo of a [CLASS].”

Table 8. Ablation on λ across 11 datasets, with results evaluated using the harmonic mean (HM) metric.

α ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

0.0 74.01 95.97 96.35 76.00 84.42 90.10 38.52 79.67 68.21 82.65 81.63
0.01 74.07 96.12 96.39 75.95 84.82 90.23 37.87 79.85 67.73 87.21 82.11
0.1 74.23 96.25 96.49 76.32 84.81 90.53 38.66 80.23 69.79 83.21 82.91
0.2 74.38 96.40 96.74 76.67 85.31 90.61 39.27 80.25 70.58 82.68 82.70
0.5 74.45 96.68 96.54 77.09 85.74 90.86 40.37 80.61 72.67 82.87 83.05
3.0 74.09 96.59 96.51 77.72 86.65 90.98 40.48 81.10 73.54 77.95 83.89
4.0 74.04 96.62 96.55 77.73 86.78 90.98 40.66 81.14 73.75 77.27 83.45
5.0 73.93 96.62 96.60 77.86 86.42 91.03 40.42 81.07 73.69 78.05 83.84
6.0 73.83 96.61 96.66 78.05 86.48 91.00 41.15 81.20 73.82 75.23 83.68
7.0 73.78 96.62 96.58 78.06 86.53 90.95 40.88 81.10 73.65 75.85 83.55
10.0 73.68 96.64 96.56 77.86 86.46 91.00 41.01 80.93 73.68 77.61 83.38

Table 9. Ablation on different regularization strategies.

Regularization Base Novel HM

Cosine 85.68 77.16 81.20
L1 85.46 76.03 80.47

MSE 85.13 74.62 79.53

E. Ablation Analysis on Regularization Strate-
gies

We investigate the impact of various regularization strate-
gies aimed at maximizing the similarity between class to-
ken features and frozen CLIP features to retain pre-trained
knowledge. The results, summarized in Tab. 9, indicate that
cosine regularization achieves the best performance. In con-
trast, both L1 and MSE losses lead to performance degra-
dation, with MSE causing a significant decline. This re-
sult can be attributed to the more relaxed and flexible con-

straints of cosine regularization, enabling the class token to
preserve generalizability while effectively capturing task-
specific knowledge.

F. Few-Shot Learning
Tabs. 10 and 11 provide detailed comparisons of MMRL
and prior state-of-the-art methods on few-shot learning
across 11 datasets. MMRL achieves the highest average
performance across all shots. Note that the MMA results
are reproduced from the open-source code, as the original
paper does not report results for this experiment.



Table 10. Comparison of MMRL with previous state-of-the-art methods on few-shot learning across 11 datasets.

Dataset Method 1 shot 2 shots 4 shots 8 shots 16 shots

Linear probe CLIP 45.83 57.98 68.01 74.47 78.79
CoOp 67.56 70.65 74.02 76.98 79.89
CoCoOp 66.79 67.65 71.21 72.96 74.90
MaPLe 69.27 72.58 75.37 78.89 81.79
PromptSRC 72.32 75.29 78.35 80.69 82.87
MMA 69.28 72.08 76.38 79.57 82.76

Average

MMRL (Ours) 72.67 75.90 79.20 81.47 84.34

Linear probe CLIP 32.13 44.88 54.85 62.23 67.31
CoOp 66.33 67.07 68.73 70.63 71.87
CoCoOp 69.43 69.78 70.39 70.63 70.83
MaPLe 62.67 65.10 67.70 70.30 72.33
PromptSRC 68.13 69.77 71.07 72.33 73.17
MMA 69.17 70.37 71.00 71.77 73.13

ImageNet

MMRL (Ours) 69.00 70.30 71.40 72.33 73.40

Linear probe CLIP 79.88 89.01 92.05 93.41 95.43
CoOp 92.60 93.07 94.40 94.37 95.57
CoCoOp 93.83 94.82 94.98 95.04 95.16
MaPLe 92.57 93.97 94.43 95.20 96.00
PromptSRC 93.67 94.53 95.27 95.67 96.07
MMA 92.90 94.00 94.33 95.37 96.33

Caltech101

MMRL (Ours) 94.17 94.83 96.03 96.27 97.13

Linear probe CLIP 44.06 58.37 71.17 78.36 85.34
CoOp 90.37 89.80 92.57 91.27 91.87
CoCoOp 91.27 92.64 92.81 93.45 93.34
MaPLe 89.10 90.87 91.90 92.57 92.83
PromptSRC 92.00 92.50 93.43 93.50 93.67
MMA 91.23 91.97 92.23 92.77 93.23

OxfordPets

MMRL (Ours) 90.87 91.57 92.57 93.03 93.83

Linear probe CLIP 35.66 50.28 63.38 73.67 80.44
CoOp 67.43 70.50 74.47 79.30 83.07
CoCoOp 67.22 68.37 69.39 70.44 71.57
MaPLe 66.60 71.60 75.30 79.47 83.57
PromptSRC 69.40 73.40 77.13 80.97 83.83
MMA 67.87 71.77 76.50 81.40 85.70

StanfordCars

MMRL (Ours) 68.70 72.93 78.17 82.57 86.43

Linear probe CLIP 69.74 85.07 92.02 96.10 97.37
CoOp 77.53 87.33 92.17 94.97 97.07
CoCoOp 72.08 75.79 78.40 84.30 87.84
MaPLe 83.30 88.93 92.67 95.80 97.00
PromptSRC 85.93 91.17 93.87 96.27 97.60
MMA 83.60 90.30 93.00 95.97 97.97

Flowers102

MMRL (Ours) 85.97 91.20 94.60 96.60 98.40



Table 11. Comparison of MMRL with previous state-of-the-art methods on few-shot learning across 11 datasets.

Dataset Method 1 shot 2 shots 4 shots 8 shots 16 shots

Linear probe CLIP 43.96 61.51 73.19 79.79 82.90
CoOp 84.33 84.40 84.47 82.67 84.20
CoCoOp 85.65 86.22 86.88 86.97 87.25
MaPLe 80.50 81.47 81.77 83.60 85.33
PromptSRC 84.87 85.70 86.17 86.90 87.50
MMA 83.03 82.50 82.13 83.00 84.57

Food101

MMRL (Ours) 84.87 85.53 85.77 86.33 87.03

Linear probe CLIP 19.61 26.41 32.33 39.35 45.36
CoOp 21.37 26.20 30.83 39.00 43.40
CoCoOp 12.68 15.06 24.79 26.61 31.21
MaPLe 26.73 30.90 34.87 42.00 48.40
PromptSRC 27.67 31.70 37.47 43.27 50.83
MMA 28.73 31.90 37.57 44.83 52.70

FGVCAircraft

MMRL (Ours) 28.53 34.23 40.47 48.07 57.60

Linear probe CLIP 41.58 53.70 63.00 69.08 73.28
CoOp 66.77 66.53 69.97 71.53 74.67
CoCoOp 68.33 69.03 70.21 70.84 72.15
MaPLe 64.77 67.10 70.67 73.23 75.53
PromptSRC 69.67 71.60 74.00 75.73 77.23
MMA 64.00 67.17 69.97 72.30 74.63

SUN397

MMRL (Ours) 68.90 71.53 73.93 76.00 77.70

Linear probe CLIP 34.59 40.76 55.71 63.46 69.96
CoOp 50.23 53.60 58.70 64.77 69.87
CoCoOp 48.54 52.17 55.04 58.89 63.04
MaPLe 52.13 55.50 61.00 66.50 71.33
PromptSRC 56.23 59.97 65.53 69.87 72.73
MMA 52.27 56.90 63.93 67.97 73.47

DTD

MMRL (Ours) 56.37 61.37 67.87 71.60 75.30

Linear probe CLIP 49.23 61.98 77.09 84.43 87.21
CoOp 54.93 65.17 70.80 78.07 84.93
CoCoOp 55.33 46.74 65.56 68.21 73.32
MaPLe 71.80 78.30 84.50 87.73 92.33
PromptSRC 73.13 79.37 86.30 88.80 92.43
MMA 55.07 59.80 79.40 86.47 92.37

EuroSAT

MMRL (Ours) 76.00 82.87 87.67 88.73 93.37

Linear probe CLIP 53.66 65.78 73.28 79.34 82.11
CoOp 71.23 73.43 77.10 80.20 82.23
CoCoOp 70.30 73.51 74.82 77.14 78.14
MaPLe 71.83 74.60 78.47 81.37 85.03
PromptSRC 74.80 78.50 81.57 84.30 86.47
MMA 74.17 76.17 80.10 83.43 86.30

UCF101

MMRL (Ours) 75.97 78.50 82.67 84.67 87.60


