MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework

Supplementary Material

Table 7. **Overall Results.** A comparative analysis of attack success rate among MOS-8 attacks with APGD-CE under large magnitude of attack budgets. For MOS-8 Attack, we record its K value, while for others it denoted the number of restarts. The optimal outcome is highlighted in bold and marked with a grey background.

			Attack Success Rate			
CIF	AR-10 ($\epsilon = 16/255$)		APGD	MOS-8	MOS-8	Diff. (5)
ID	Paper	Architecture	(5)	(1)	(5)	MOS CE
0	Rade et al. (2022) [36] (ddpm)	PreActResNet-18	74.30	76.38	76.80	+2.50
1	Rade et al. (2022) [36] (extra)	PreActResNet-18	83.13	82.48	83.36	+0.23
2	Sehwag et al. (2022) [40]	ResNet-18	77.51	76.79	77.37	-0.14
3	Chen et al. (2020) [9]	ResNet-50	81.66	82.29	82.40	+0.74
4	Gowal et al. (2020) [22]	WideResNet-28-10	71.36	72.91	73.51	+2.15
5	Wang et al. (2023) [47]	WideResNet-28-10	71.12	72.12	72.67	+1.55
6	Rebuffi et al. (2021) [37]	WideResNet-28-10	70.86	72.39	72.83	+1.97
7	Sehwag et al. (2022) [40]	WideResNet-34-10	72.45	72.43	72.95	+0.5
8	Rade et al. (2022) [36]	WideResNet-34-10	75.59	75.76	76.21	+0.62
9	Gowal et al. (2021) [23]	WideResNet-70-16	66.20	65.98	66.40	+0.20
10	Gowal <i>et al.</i> (2020) [22]	WideResNet-70-16	70.84	71.22	71.67	+0.83
11	Rebuffi et al. (2021) [37]	WideResNet-70-16	73.02	73.43	73.98	+0.96
	Average Rank		2.58	2.33	1.1	
ImageNet ($\epsilon = 8/255$)						
12	Salman <i>et al.</i> (2020) [39]	ResNet-18	89.02	90.74	90.90	+1.88
13	Salman et al. (2020) [39]	ResNet-50	85.06	85.36	85.84	+0.78
14	Wong et al. (2020) [49]	ResNet-50	89.64	90.52	90.64	+1.00
15	Engstrom et al. (2019) [17]	ResNet-50	89.74	90.24	90.42	+0.68
16	Salman et al. (2020) [39]	WideResNet-50-2	84.80	84.96	85.16	+0.36
Average Rank			3.00	2.00	1.00	