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S1. Formulation of Low-Rank Dynamics
As discussed in Sec. 3.1, modeling the dynamics of an
object typically requires a per-timestamp deformation of
all the particles (i.e., vertices for meshes, points for point
clouds, and splats for 3D Gaussians) that make up its geom-
etry. Suppose that we have an object composed of N parti-
cles and a desired dynamic sequence of T timestamps. The
temporal deformations of all particles can be represented by
a matrix D ∈ RT×N×d, where d is the degrees of freedom
(e.g., d = 6 for rigid transformations). Generally, D has a
lot of redundancy when representing real-world dynamics.
Therefore, we would like to seek a low-rank approximation
of it. Mathematically, the low-rank decomposition of a ma-
trix like D has two different forms expressed by

DT×N×d ≈ BT×K×d
t WK×N

s , (S1)

DT×N×d ≈ BK×N×d
s W T×K

t , (S2)

where K is the desired rank. We call the matrix B with
dimension d as basis, and the other one W as weight.
Eqs. (S1) and (S2) both decouple the temporal and spatial
dimensions by splitting them into basis and weight. We then
name the ones with temporal dimension (T ) as temporal ba-
sis Bt and temporal weight Wt. Correspondingly, the ma-
trices with spatial dimension (N ) are named as spatial basis
Bs or spatial weight Ws.

In fact, both decomposition forms have been playing
important roles in the applications of dynamic model-
ing. For example, Eq. (S1) is applied in the sparse con-
trol paradigms [4, 6, 19] and the linear blend skinning
(LBS) [14, 16] algorithm, where Bt is interpreted as the
transformations/poses of control nodes/body joints, and Ws

is the blend weights of the nodes or joints. When applying
Eq. (S2), Bs and Wt are interpreted as the blend shapes
and their corresponding weights for the per-timestamp lin-
ear combination [3, 7, 8, 23].

In this work, we focus on the low-rank form of Eq. (S1)
in modeling dynamic characters. The reason is twofold.
First, the temporal weight Wt in Eq. (S2) typically requires
as much motion data as possible for one object to find a ca-
pacious low-rank space, which is prohibitively difficult in
practice. In contrast, the spatial weight Ws can be super-
vised much more easily by the well-defined blend weights
in existing 3D models. Second, considering the availabil-
ity of rich motion resources [1, 11] and powerful motion
generation methods [2, 5], there is no need to model the
temporal basis Bt from scratch. What we have to do is

finding a transformation from the input character pose to
a pre-defined rest pose, and then any desired animation is
within easy reach.

Note that theoretically, joint/bone positions are only
proxies or interfaces for the low-rank terms and are not
indispensable to the dynamic modeling, as expressed by
Eq. (S1). Consequently, some related works [19] choose to
model such proxies in an implicit way. However, we still in-
clude the bones as one of the desired animation assets in our
work for a self-contained and artist-friendly representation
compatible with existing animating pipelines. Furthermore,
the explicit existence of bones can bring much convenience
when applying body priors to assist the optimization, as in-
troduced in Sec. 3.4.

S2. Implementation Details

S2.1. Coarse-to-Fine Shape Representation

To address the limitations of the proposed framework and
boost the performance, we introduce an additional design
at the input side of the autoencoder, i.e., the coarse-to-fine
shape representation (Sec. 3.3). In addition to the over-
all framework presented in Fig. 2, we include two sepa-
rate pipelines in Fig. S1 here for a clearer illustration of the
coarse and fine training stages. In the following content, we
will provide more details of this part, particularly regarding
the motivations and implementation choices.

With the particle-based shape autoencoder, our method
can already produce fairly good results of blend weights.
However, the joint outputs are still unsatisfying in fine-
grained regions like the hands. Meanwhile, the pose pre-
diction can hardly converge. We attribute these issues to
the ambiguity of the input points and treat the lite training
process (taking uniformly sampled points as input and only
predicting bone positions, as shown in Fig. S1 upper) as
a coarse stage that provides rough but valuable localization
information about the input character. To be specific, we ex-
ploit some of the coarse joint locations to gain a finer shape
representation by applying two different strategies, i.e., the
canonical transformation and the hierarchical sampling.
Canonical transformation. Although we have normal-
ized the input shapes to align their scales, they still differ
in global transformations. Since the poses we want to pre-
dict are relative to the fixed origin, the same pose can have
huge numerical differences under different coordinate sys-
tems. This will lead to a dramatically increased difficulty in
pose prediction. Therefore, we move and rotate the entire
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Figure S1. The coarse (upper) and fine (lower) stages of training our framework. In the coarse stage, the input shape is uniformly
sampled and only the bone positions are predicted. We apply data augmentation to the inputs via random 3D rotations, so that the coarse
model is generalizable to global transformations of in-the-wild cases with an acceptable accuracy. In the fine stage, we apply canonical
transformation and hierarchical sampling to the shapes in advance based on the ground-truth bone positions. Then during inference, a 3D
character is fed into the coarse framework to get its bone positions, which guide the establishment of coarse-to-fine shape representation
later in the fine framework. Note that the body prior loss (Sec. 3.4) is directly applied to the bone positions. As for pose prediction, we
take the ground-truth bones as a proxy and use the predicted pose to transform them, thereby indirectly affecting the pose optimization.

shape to a canonical position and orientation before sam-
pling. In practice, we choose this transformation based on
an empirically selected datum plane (referred to as the hip
plane) determined by three joint positions, i.e., the hip (root
of the kinematic tree) and two upper thighs, which can be
accurately located even in the coarse stage. The canonical
transformation is applied so that: 1) the hip is located at the
origin; 2) the normal of the hip plane is aligned with the
z-axis; 3) the vector from the right to the left thigh is par-
allel to the x-axis. This process simplifies the input shape’s
spatial distribution and eliminates the pose representation’s
ambiguity. Furthermore, the chosen canonical transforma-
tion ensures a consistent upright and front-facing orienta-
tion of the input character, which is a common prerequisite
of many auto-rigging methods [7, 15, 21]. By integrating
the coarse localization, we now automate this preprocess-
ing step, enabling our framework to effectively handle the
inputs regardless of their initial spatial configuration (posi-
tions, rotations, and scales).

Hierarchical sampling. Some parts of the input character,
e.g., the hands, present fine-grained details within small re-
gions, which typically demand additional resources for ac-
curate processing. However, the uniform sampling applied

to the input shape, as well as the subsequent farthest point
sampling (FPS) algorithm, usually results in sparsely dis-
tributed sample points on hands, which are far from enough
to describe the geometry of fingers. Theoretically, increas-
ing the number of sampling points N and the downsam-
pling number M can bring a larger representation capac-
ity for the entire geometry including the hand regions, but
that will significantly add to the computational overhead.
For efficiency, we choose to keep the total sampling num-
ber unchanged and instead leverage the coarse prediction
of hand joints. Specifically, we replace the uniform sam-
pling with a hierarchical approach that ensures a designated
proportion of sample points are distributed on both hands.
Since the FPS algorithm in the shape encoder disrupts the
non-uniformity of samples, we adapt it to a hierarchical al-
gorithm as well.

S2.2. Networks and Hyperparameters

For the shape autoencoder, we use a point cloud of size
N = 32768 as the input. All the points are sampled on
the surface of the input mesh. In the fine training or the in-
ference stage equipped with the hierarchical sampling, 50%
of the points are uniformly sampled and the other 50% are



sampled near the hand joints. The hyperparameters of the
shape autoencoder are consistent with the original setting of
3DShape2VecSet [22], which internally uses shape latents
F ∈ RM×C with M = 512 and C = 512 for the neu-
ral field. Note that in [22], F can either be learnable em-
beddings or initialized by applying farthest point sampling
(FPS) on the input point cloud. We choose the latter imple-
mentation in this work. During training, the learning rate
is linearly increased to 1e− 4 within the first 1% iterations
(warm-up), and then gradually decreased using the cosine
decay schedule until reaching the minimum value of 1e−5.

S2.3. Body Prior Losses
The implementation of the body prior losses (introduced in
Sec. 3.4) involves: 1) defining a prior-based bone pair list,
and 2) applying L1-based loss to their predicted positions
or directions. For example, to encourage bone connectivity,
we define a list of bone pairs that should be connected based
on the predefined topology, select their predicted head-tail
positions, and penalize their pair-wise L1 distances.

S3. Data Details
S3.1. Mixamo Dataset
To obtain sufficient training data of 3D characters with high-
quality geometry and animation assets, we collect the artist-
designed 3D models from Mixamo [1] to form a dataset,
which comprises texture meshes of 95 exquisite charac-
ters (each has an average of 15000 vertices), along with
2453 diverse motion sequences (each has an average of 200
frames). All the characters are preprocessed to share a stan-
dard skeleton structure with K = 52 bones (the leaf bones
are removed). For characters with non-standard skeletal
structures originally, the blend weights of those bones are
transferred to their topologically nearest ancestral bones
within the standard skeleton. If some standard bones are
missing in a character (e.g., armless person), we mask their
corresponding values (weight channels and bone-wise at-
tributes) in loss computing. We use 95% of the data for
training and the remaining 5% for for validation. During
each training iteration, we randomly choose a character-
motion pair to get the corresponding animation assets, re-
sulting in an effective dataset size equivalent to over 40 mil-
lion frames. In Fig. S2, we show some example characters
and motions from the Mixamo dataset.

S3.2. VRoid Dataset
Our training framework can also be extended to different
skeleton topologies. To demonstrate this capacity, we use
VRoid Studio [17] to manually create 35 different anime
characters (30 for training and 5 for validation) with addi-
tional accessories including two rabbit-like ears and a fox-
like tail, as shown in Fig. S3. These characters differ in

Figure S2. Some samples from the collected Mixamo [1]
dataset. The dataset contains bipedal humanoids with different
shapes, ranging from realistic humans to cartoon or fantasy crea-
tures. Each character is preprocessed to be animatable by any of
the motion sequences. The proposed framework is trained on this
dataset.

body shape, clothes, hair style, and the shape of ears and
tails. They are all preprocessed to share the same skeleton
definition of Mixamo [1] but with extra bones of the acces-
sories. Therefore, they can also be animated with any of the
Mixamo motion sequences during the extra-bone training
(i.e., fine-tuning the final layer of the weight decoder and
the extra learnable queries, based on the standard-skeleton
model pretrained on the Mixamo dataset). The experiments
show that with our framework, 30 training characters are
sufficient to obtain a good model that produces promising
predictions for extra bones.

S4. More Results
S4.1. Analysis of Efficiency
We compare the inference speed with inputs of differ-
ent vertex numbers in Fig. S9. Our method maintains
sub-second time cost even with 10,000+ vertices, achiev-
ing 1000x and 100x speedups over RigNet [21] and
TARig [15] respectively. While TARig accelerates RigNet’s
iterative process through feed-forward regression, we fur-
ther introduce a particle-based shape encoder that by-
passes mesh connectivity processing while achieving bet-



Figure S3. Some samples of the anime characters with addi-
tional accessories for the extra-bone fine-tuning. These char-
acters are all manually created using VRoid Studio [17] and then
preprocessed to be compatible with the standard skeleton defini-
tion of Mixamo [1].

ter performance. This architecture also enables point sub-
sampling, making our approach particularly efficient for
high-resolution inputs.

S4.2. Additional Comparison Results
More comparison cases. In addition to Figs. 4 and 6, we
exhibit more cases of comparison with the baselines, includ-
ing Meshy [13] and Tripo [18] (Fig. S4), TADA [9] and Hu-
manGaussian [12] (Fig. S5). The results can prove the ef-
fectiveness, robustness, and generalizability of the proposed
framework.
Comparison with more auto-rigging methods. For com-
parison with existing auto-rigging methods, we include
more cases and compare with two more baselines here in
Fig. S6 (in addition to Fig. 5), i.e., Neural Blend Shapes [7]
and TARig [15]. Neural Blend Shapes only supports T-pose
inputs and has quite limited generalizability to shapes dif-
ferent from the SMPL mesh. TArig’s skeleton predictions
are better than Neural Blend Shapes and RigNet [21], but its
blend weights still cannot meet the standard of practical ap-
plication, producing spatial unsmoothness when deforming
the meshes. Besides, all three baselines are unable to pro-
duce fine-grained hand bones, while our method handles the
fingers well.

Furthermore, the commercial software, Mixamo [1] and
Anything World [10], rely much on the symmetry or pose

simplicity (e.g., T-pose and A-pose) of the inputs and will
raise errors when faced with complex ones. Therefore, we
compare them separately on some additional cases here in
Fig. S7. It can be observed that Anything World produces
significant errors when extracting the bones of the left arm
for the character with a tail (left case). Meanwhile, Mixamo
fails to fail to distinguish the left and right sides of the ninja
(right case) and produces a mirrored skeleton. Moreover,
when faced with a non-rest input character like this ninja,
the predicted pose-to-rest transformations of Mixamo and
Anything World both suffer from unnatural deformations,
while our results remain good.
Qualitative comparison on the ModelsResource
dataset [20]. We also evaluate the proposed framework
on the bipedal-humanoid subset of the “ModelsResource-
RigNetv1” dataset [20]. Fig. S8 shows some cases for
qualitative comparison with RigNet [21] and TARig [15].
Both of these two baselines are trained on the aforemen-
tioned dataset, but our model has never encountered a
similar data distribution during training. Despite this,
our method still achieves the best quality in rigging and
skinning, demonstrating its strong generalizability.

S4.3. Additional Visualizations
Tricky cases. We show more results produced by our
method, focusing on the details and some tricky cases. Each
sub-figure of Fig. S10 proves some advantages of our meth-
ods, which is interpreted one by one as follows.
(a) Fine-grained control of fingers. Thanks to the coarse-
to-fine shape representation (Sec. 3.3), our method shows
remarkable accuracy at the hand regions, which is difficult
for most existing approaches.
(b) Capacity of unusual shapes. For those characters with
an exaggerated body ratio (e.g., extremely large head, short
limbs, etc), our method can adaptively change the bone
length to fit the shape. This is intractable for template-based
human-generating works.
(c) Complex input poses. Poses far from the T-/A-pose
are fully supported. Our model can not only produce the
well-fitted posed skeleton, but can also transform it into the
T-pose for further animating applications.
(d) Efficiency for high polygon models. Benefiting from
the particle-based shape autoencoder (Sec. 3.2), our frame-
work is efficient and robust for different input resolutions,
ranging from low-poly meshes like (c) to practical game-
level 3D models like (d). The Wukong model in (d) has over
1 million triangular faces, but our method can still make it
animatable within 3 seconds.
(e) Support for asymmetric inputs. While many rigging
methods assume symmetric inputs, our method can effec-
tively deal with asymmetric ones. For example, the big gun
of this cyborg in (e) is bound well to his arm bones.
(f) Adaptation to non-existing bones. This armless statue
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Figure S4. Additional Comparison with generative 3D methods, i.e., Meshy [13] and Tripo [18]. We feed them the same image
as reference and compare the performance based on their generated 3D models respectively. The blend weights of two joints, i.e., Left
Shoulder and Right Leg, are visualized. Given that these baselines can only apply preset motions and their rest-pose models cannot be
exported, we apply a similar “running” sequence to all the methods for fair comparison. For non-rest cases, the T-pose models predicted
by our method are included as the front-view animating results. Zoom in to better view the details.
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Figure S5. Additional comparison with template-based avatar generation methods, i.e., TADA [9] and HumanGaussian [12] (HG).
We use the generated meshes from TADA and 3D Gaussians from HG for comparison. Note that the skeletons of these two baselines are
identical to the shape-specific SMPL [14] templates (without bone tail), with their weights interpolated from the template meshes. Zoom
in to better view the details.

is predicted to have extracorporeal arm bones. However,
due to the spatial query mechanism of our framework, those
dummy bones have no weights toward the actual vertices
and can be simply removed without any side effects.

(g) & (h) Extension to extra bones. Once fine-tuned with
some extra data (Sec. 3.5), our model is capable of produc-
ing positions and weights of non-standard bones. Here we
show the long tail of a monkey in (g) and the long ears of a
bunny in (h), which are all fully animatable.

Geometry-awareness: attention vs. adding. Intuitively,
simply concatenating or adding the normals to the coor-
dinates when feeding points into the shape encoder can
achieve the same goal as our geometry-aware attention.
However, we found in practice that such a vanilla inject-
ing strategy often leads to overfitting on the high-quality
training mesh normals. The weight prediction depends so
much on normals that some regions are influenced by far-
away bones just because they have plausible normals, es-
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Figure S7. Comparison with commercial auto-rigging software, i.e., Mixamo [1] and Anything World [10]. Note that these two tools
can only deal with simple input poses (T- or A-pose is recommended) and often raise errors when faced with complex ones.

pecially when faced with lower-quality meshes (e.g., pro-
duced by generative models). We present a typical case in
Fig. S11. While injecting normal information via adding re-
solves the weight corruption problem in the armpit region,
it introduces a new issue of incorrect weights on hands. In
contrast, the proposed attention mechanism benefits from

normal information without any side effects.

Geometry-aware attention score. In addition to the two
exemplar cases in Fig. 7, here we visualize the geometry-
aware attention score of more characters in Fig. S12. The
distribution of high-attention-score points shows patterns
with statistical significance. Specifically, regions with pos-
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Figure S9. Comparison of the inference time cost with increas-
ing number of vertices as the input.

sible spatial ambiguity, e.g., inner thigh, armpit, between
ears, etc., are affected more by the normal values. This ver-
ifies the effectiveness of our geometry-aware attention, as it
works exactly in the desired way to adaptively exploit the
normal information.
Limitations of SMPL-based rigging. Template-based
avatar generation methods [9, 12] benefit a lot from the
well-defined SMPL mesh [14, 16], enabling the genera-
tion of animatable characters with no additional rigging
cost. However, as discussed in Secs. 1 and 4.2, one of
the unneglectable limitations of these methods is their in-
ability to depart from realistic human shapes. Although
TADA [9] attempts to address this issue by predicting vertex
deformations of the template mesh, it remains constrained
by the preset body ratio of SMPL. Fig. S13 demonstrates
some practical examples of cartoon characters with exag-
gerated body shapes that the SMPL model can hardly ac-
commodate. As illustrated in the left part of Fig. S13, the
large heads of these characters cannot be fitted by the tem-
plate meshes, and the interpolated blend weights will defi-
nitely be incorrect in the head regions. In the right part of
Fig. S13, we exhibit the results generated by two template-

(c)

（d）

（b）

（e）

（f）

（g）

（h）

（a）

Figure S10. Results of more tricky cases to demonstrate the
advantage of our method. (a) Fine-grained control of fingers;
(b) Capacity of unusual shapes; (c) Complex input poses; (d) Effi-
ciency for high polygon models; (e) Support of asymmetric inputs;
(f) Adaptation to non-existing bones; (g) & (h): Extension to extra
bones (e.g., long ears and tails).

based methods using the same text prompt “cartoon brown
bear with extremely large head and short legs”. Despite the
specific prompting, both methods still produce body ratios
resembling those of realistic humans, which limits their ap-
plicability in practical scenarios. In contrast, our method
offers a promising solution by making bipedal characters of
any shape ready for animation.
More versatile pose inputs. It is worth noting that many
of our evaluations above are based on inputs close to rest
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Figure S11. Qualitative analysis of our geometry-aware atten-
tion module and its injecting method. The proposed attention-
based injection can benefit from normal information without any
side effects.

Figure S12. Visualization of the attention score of our
geometry-aware attention module. These per-sampled-point
values are extracted from the first attention head (out of 8 heads
in total). The brighter color (yellower) indicates more attention
to normals rather than coordinates. We also use green bounding
boxes to label some clusters where high-attention-score points are
densely distributed. It can be observed that the module adaptively
learns to rely more on normals in regions like the inner thigh since
coordinates become less discriminative there.

poses because the baselines are not specifically designed to
handle versatile pose inputs. Specifically, RigNet [21] and
TARig [15] cannot transform arbitrary poses into rest poses.
Mixamo [1] and Anything World [10] raise failure without
inputs close to A- or T-pose. Meshy [13] and Tripo [18]
perform poorly on non-rest poses (see Fig. 4 and Fig. S4).
To show our method’s generalizability of poses, we provide
more results with non-rest inputs in Fig. S14 (2).
Failure cases. Fig. S14 (1) presents some failure cases of
our method. Limitations involving challenging poses and
out-of-distribution shapes could be resolved by including
more targeted training data. As for the topological defects
of input meshes, incorporating other methods to refine the

3D geometry might be a promising solution.

S5. Videos for Dynamic Visualization and
Practical Applications

For better visualization, we provide a video file as part of
the supplementary material, which includes the following
content:
• An illustration of our inference pipeline and the data flow.
• The showcase of 3D characters and their animating re-

sults enabled by our framework. Inputs represented by
mesh and 3D Gaussian Splats are both included.

• The process of using our web demo to make 3D charac-
ters animatable with one click.

• A real-world application that brings a character figure to
live by integrating our framework with an off-the-shelf
image-to-3D generator.
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