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A. Efficiency Comparison on Large Inputs
Benefiting from the Mamba architecture, our proposed
MambaIRv2 can achieve global pixel utilization. However,
as an inevitable side effect, the global receptive field is usu-
ally accompanied by an increased computational cost since
the model needs to process more tokens at once. There-
fore, it is necessary to validate the efficiency on large res-
olution images. Here, we point out that, benefiting from
our single-directional scan, our MambaIRv2 can in fact
achieve a similar computational cost as the advanced Swin-
Transformer [14] based method HAT [4]. In Tab. A.1, we
give the MACs of our MambaIRv2 and HAT under vary-
ing input resolutions. As one can see, our MambaIRv2-
B, which has a roughly similar number of parameters
as HAT [4], is more efficient than HAT from resolution
64 × 64 to 1024 × 1024. For example, on the 256 × 256
resolution, which is a common inference patch size, our
method achieves a 30% savings in computational cost met-
ric MACs. At the high-resolution setting of 1024 × 1024,
our method achieves fewer MACs than HAT. It is worth
noting that in addition to this impressive efficiency, our
MambaIRv2 still outperforms HAT by a noticeable margin,
which has been extensively verified in the main paper.

B. More Ablation Results
B.1. Ablation on Prompt Learning

In the proposed ASE, we use learnable prompts to absorb
information of similar pixels across the whole image, which
will be later inserted into the state space modeling to help
the query pixel to see the unscanned tokens. The proposed
prompt learning contains two key hyperparameters, namely
the size of the prompt pool T , and the internal rank r in the
semantic decoupling. In this section, we perform hyperpa-
rameter ablation to investigate the impact of different T and
r on the performance. As shown in Tab. A.2, when the r is
small, increasing the number of prompts T can steadily im-
prove performance. For example, when r = 16, increasing
T from 64 to 128 can result in a 0.03dB improvement on
Manga109. However, when r is large, increasing the size of
the prompt pool sometimes instead results in a slight perfor-
mance drop. A similar observation also appears in the inner-
rank r. In practice, we choose a moderate T × r = 32× 64
considering the performance and efficiency trade-off.

B.2. Visualization of Semantic Neighboring

In the proposed Semantic Guided Neighboring (SGN), we
restructure the image so that semantically similar pixels are

Table A.1. The computational cost MACs with images of different
resolutions. We compare our MambaIRv2-B and HAT [4]. We
adopt the 4× classical SR task and set the output size from 64×
to 1024× 1024.

models 64× 64 128× 128 256× 256 512× 512 1024× 1024

HAT [4] 26.05G 58.62G 162.85G 527.63G 1882.28G
MambaIRv2 7.12G 28.49G 113.97G 455.89G 1823.04G

Table A.2. Ablation experiments on the hyper-parameters of the
number of prompts T in the prompt pool, and the inner rank r in
the semantic decoupling.

r × T
Set14 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM

16 × 64 33.90 0.9205 32.96 0.9359 39.19 0.9781
16 × 128 33.91 0.9205 32.96 0.9354 39.22 0.9783
32 × 128 33.97 0.9210 32.97 0.9360 39.20 0.9783
32 × 64 33.95 0.9213 32.97 0.9355 39.24 0.9784

also spatially close in the unfolded 1D sequence. In this sec-
tion, we visualize the learned restructured image in Fig. A.1
for better understanding. It can be seen that the previous
distant pixels with similar semantics in the original feature
map become spatially close after the restructuring of the
SGN. By placing semantically similar pixels closer, the pro-
posed SGN alleviates Mamba’s long-range decay problem
resulting from the causal modeling nature and thus facili-
tates better exploit those distant but similar pixels.

C. Comparison on Receptive Field
As pointed out in previous work [10], a significant advan-
tage of the Mamba architecture is the practical global re-
ceptive field, which helps the model activate more pixels
to improve restoration performance. Here, we give visual-
ization comparison results of LAM [9] and ERF [15] with
other strong baselines. First, the Fig. A.2 gives the results
of the LAM attribution map. One can see that our Mam-
baIRv2 can activate more pixels than other state-of-the-art
methods HAT [4] by presenting a wider LAM attribution
and a higher DI, thus resulting in higher-quality restoration
results. Second, the Fig. A.3 further gives the effective re-
ceptive filed visual comparison with other methods. Our
MambaIRv2 exhibits darker colors across the entire image,
indicating the global perception of the proposed method.

It is noteworthy that the ERF visualization in Fig. A.3
can also demonstrate the effectiveness of the proposed non-
causal modeling strategy in our MambaIRv2. In detail, the
ERF visualization of MambaIR [10] exhibits a clear criss-
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Figure A.1. Visualization of the effectiveness of the proposed
SGN. Before SGN, the semantically similar pixels belonging to
the same object in the original feature map are far apart. After
SGN, these pixels are spatially close to each other, thus facilitat-
ing strong interactions in the unfolded 1D sequence.

crossing, which is a clear sign of the causal modeling prop-
erty as the center pixel can only utilizes its previous pix-
els in the scanned 1D sequence. In contrast, our proposed
MambaIRv2, which aims at eliminating causal modeling in
Mamba for image restoration, does not exhibit such unfa-
vorable crisscrossing, demonstrating the validity of our pro-
posed non-causal modeling.

D. More Implementation Details
We employ the DF2K [13, 20] dataset to train models on
classic SR and use DIV2K only to train lightweight SR
models. Moreover, we use Set5 [2], Set14 [21], B100 [17],
Urban100 [11], and Manga109 [18] to evaluate the effec-
tiveness of different SR methods. For Gaussian color im-
age denoising and JPEG CAR, we utilize DIV2K [20],
Flickr2K [13], BSD500 [1], and WED [16] as our train-
ing datasets. Our testing datasets for guassian color im-
age denoising includes BSD68 [17], Kodak24 [7], McMas-
ter [22], and Urban100 [11]. And we use Classic5 [6]
and LIVE1 [19] datasets to evaluate the performance of the
JPEG CAR task. The performance is evaluated using PSNR
and SSIM on the Y channel from the YCbCr color space.

E. Comparison to ATD
The Adaptive Token Dictionary (ATD) [23] which can gen-
erate input-specific tokens/prompts to help the query pixel
see out of the window, appears close to our proposed Mam-
baIRv2, with both including additional prompts for ob-
taining more information. Here, we summarize the main
differences between them in the following aspects. First,
the goals of introducing prompts in these two methods are
clearly different. The ATD uses prompts to overcome the
limited receptive field in the window attention, while our
MambaIRv2 aims to mitigate the causal modeling of the
Mamba. Second, the utilization of prompts for seeing be-
yond the scanned sequence in our MambaIRv2 is well-
motivated. Specifically, we mathematically analyze the dif-
ference between state space and attention in the main pa-
per, based on which we propose to add prompts to the C
matrix in the state equation to attentively query relevant
pixels across the image. In contrast, ATD adopts intuitive

Table A.3. Comparison with ATD [23] on 2× classic SR.

methods Set5 Set14 B100 Urban100 Manga109

ATD [23] 38.61 34.95 32.65 34.70 40.37
MambaIRv2 38.65 34.89 32.62 34.49 40.42

cross-attention to incorporate prompts into the feature map.
Third, the way in which the prompts are generated is differ-
ent. Specifically, ATD uses the attention map to implicitly
obtain the category of each pixel. However, attention maps
are even not available in Mamba, and thus we propose to
design separate routing modules to explicitly learn the cat-
egory of each pixel. In Tab. A.3, we give the quantitative
comparison of our MambaIRv2 against ATD, and it can be
seen that our proposed method can achieve comparable per-
formance to ATD. It should be noted that ATD [23] is a
highly optimized Transformer-based method since Trans-
former has been introduced to image restoration for many
years. Given the Mamba-based methods are still in their in-
fancy since the introduction of MambaIR [10]. It is promis-
ing for the Mamba-based method to achieve further perfor-
mance improvements over its transformer counterparts.

F. Limitation and Future Works

Our MamabIRv2 can effectively alleviate the inherent
causal nature of Mamba architecture [8] benefiting from
the proposed attentive state space modeling. Nonetheless,
our work can be further improved in the future in the fol-
lowing aspects. First, the Mamba architecture emerges as
the third backbone option for image restoration, in addition
to CNNs and ViTs, which provide more solutions for de-
signing image restoration networks. Therefore, an in-depth
interpretability analysis about what exactly Mamba or ViT
has learned during the restoration of an image is important
for further understanding and network design. Second, al-
though this work follows existing works [12] to cover mul-
tiple image restoration tasks, some other tasks such as im-
age deblurring, dehazing and deraining can also be explored
in the future. The implementation of the U-shaped Mam-
baIRv2 backbone for these tasks to achieve further perfor-
mance improvement is also interesting and promising [3].
Finally, despite the promising results shown, we would like
to point out that the Mamba-based image restoration net-
work is still in its early stages. With the increasing research
interest in Mamba, it will be promising to study the state-
space models for low-level vision.

G. Proof for Long-range Decay

As pointed out in the main paper, the causal property of
Mamba leads to weak interactions between the query to-
ken and other remote tokens, i.e., the long-range decay.



Here, given the condition of the causal modeling equation
in Mamba, we attempt to derive the long-range decay as
follows.

Formally, recall that the causal modeling of the state-
space equation is given by:

hi = Ahi−1 +Bxi,

yi = Chi +Dxi.
(A.1)

Then, we can continuously iterate Eq. (A.1) wit i =
0, 1, · · · k. For example, setting i = 0 turns Eq. (A.1) into
the following:

h0 = Bx0

y0 = Ch0 +Dx0 = CBx0 +Dx0

(A.2)

After that, we can further set i = 1 to obtain the following
equation:

h1 = Ah0 +Bx1 = ABx0 +Bx1

y1 = Ch1 +Dx1 = C(ABx0 +Bx1) +Dx1

= CABx0 +CBx1 +Dx1

(A.3)

Set i = 2 gives the following:

h2 = Ah1 +Bx2 = A(ABx0 +Bx1) +Bx2

= A
2
Bx0 +ABx1 +Bx2

y2 = Ch2 +Dx2

= C(A
2
Bx0 +ABx1 +Bx2) +Dx2

= CA
2
Bx0 +CABx1 +CBx2 +Dx2

(A.4)

By iterating continuously, we can generalize the output yk
in the k-th time step being represented by x0 · · ·xk as the
following formula:

yk = CA
k
Bx0+CA

k−1
Bx1+· · ·+CBxk+Dxk (A.5)

Eq. (A.5) actually quantitative the interaction between
the k-th query token xk and all its previous k tokens
x0, x1, · · · , xk−1 in the causally scanned sequences to pro-
duce the k-th output yk of state-space model. It can be
clearly seen in Eq. (A.1) that the contribution of x0 to the
generation of yk is weighted by CA

k
B, which is propor-

tional to A
k
. Since in the main paper we have empirically

observed that the mean value of A is statistically less than
1, as a result, when k is large, i.e., when the two pixels are
distant, the contribution of x0 to xk is small, i.e., exhibiting
long-range decay. If x0 is very helpful to xk, this decay can
catastrophically impair the restoration of the xk.
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Figure A.2. The LAM visualization [9] comparison with different methods The diffusion index reflects the range of involved pixels. A
higher DI represents a wider range of utilized pixels.
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Figure A.3. The Effective Receptive Field (ERF) visualization [5, 15] for EDSR [13], RCAN [24], SwinIR [12], HAT [4], MambaIR [10],
and the proposed MambaIRv2. A larger ERF is indicated by a more extensively distributed dark area. The proposed MambaIRv2 achieves
a significant global effective receptive field.
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Figure A.4. More visualization results on the attentive state space modeling.
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