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1. Baselines
We compare our method with the following baseline meth-
ods in four categories:
• Monocular depth estimation: Marigold [4], Depth-

Anything [15] and Depth-Anything v2 [16] are monoc-
ular relative depth estimation methods. Due to dis-
crepancies between their results and the true scale, we
align their predictions with SfM depth before evaluation.
Metric3D [18] is a monocular metric depth estimation
method.

• Depth completion: SparseDC [6] is currently the state-
of-the-art method for monocular depth completion. We
input RGB images and SfM depth maps from each frame
of the test scenes into SparseDC for comparison.

• Optimization-based reconstruction: MonoSDF [19] and
StreetSurf [2] model scenes using Signed Distance Fields
(SDF), optimize the SDF through differentiable render-
ing, and leverage monocular geometric cues to enhance
reconstruction quality.

• Learning-based MVS: MVSNet [17], IGEV-MVS [14]
and SimpleRecon [8] construct a cost volume from multi-
view inputs to predict depth. NeuralRecon [10] aggre-
gates multi-view features in world coordinates to pre-
dict TSDF volumes, thereby extracting scene geometry.
Dust3R [13] uses a ViT model to reconstruct point maps
from input image pairs.

For each depth estimation based method, we employ the
same multi-view fusion technique as ours.

2. Comparison results
In addition to the geometric reconstruction results on DTU
presented in the main paper, we provide more qualitative
and quantitative comparisons and analyses in the supple-
mentary material. These include qualitative comparisons of
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depth maps (in Figures 1 to 5), qualitative comparisons of
geometric reconstructions (in Figures 6 to 8), and quantita-
tive evaluations (in Tables 1 to 3). When visualizing depth
maps, we normalize all methods using the same range and
employ the Spectral colormap for consistent visualization.
Based on these results, we draw the following conclusions:
• Monocular relative depth estimation methods: These

methods, particularly Depth-Anything v2, exhibit visu-
ally impressive depth predictions. However, their numer-
ical accuracy is not as strong, as evidenced by several ob-
servations. First, their quantitative evaluation results are
not particularly high. Second, their reconstructed meshes
exhibit some noise, often caused by inconsistencies be-
tween different views. Lastly, the color differences be-
tween their depth map visualizations and the ground truth
in some areas also reflect numerical errors.

• Monocular metric depth estimation methods: Metric3D
performs well on datasets like ScanNet and Waymo,
partly because its training data includes real-world indoor
and street-view data that closely resemble these scenes.
However, Metric3D performs poorly on object-level and
aerial datasets like DTU and UrbanScene3D.

• Depth completion: SparseDC is not robust to real SfM
depth inputs, which often contain noise, resulting in sub-
optimal depth completion and final reconstruction results.

• Optimization-based reconstruction methods: These
methods (e.g., MonoSDF, StreetSurf) achieve high-
quality reconstructions in indoor scenes but suffer from
very slow optimization processes. Moreover, their per-
formance is less competitive in large-scale street-view
scenes due to limited expressiveness.

• Learning-based MVS methods: IGEV predicts relatively
accurate depth maps in areas with enough views and rich
textures. However, on DTU, its performance is hindered
by the limited number of views, leading to suboptimal
matching. While IGEV performs well overall in indoor
and outdoor scenes, it struggles in low-texture and bound-
ary regions. NeuralRecon and SimpleRecon achieve good
results on ScanNet, however, we found that they perform
very poorly on other datasets.
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• Our method: Murre not only produces visually pleas-
ing depth predictions but also achieves higher numeri-
cal accuracy. It is robust in low-texture regions and per-
forms well across various datasets, demonstrating consis-
tent and reliable results.

3. Implementation of LCM
We analyse the trade-off between speed and reconstruction
quality in the main paper, where we distill our model using
Latent Consistency Model (LCM) [7] to reduce the num-
ber of denoising steps. Specifically, we fix the UNet in the
original model as the teacher UNet and use it to initialize the
student UNet and the target UNet. During training, the stu-
dent UNet is optimized using consistency objective, while
the target UNet updates its parameters via exponential mov-
ing average (EMA). During inference, the trained LCM en-
ables few-step denoising, achieving satisfactory results even
with a single step.

4. Additional ablation study on sfm method
Without any retraining, we directly evaluate our perfor-
mance using PixSfM with two different matchers: Super-
Point+SuperGlue and LoFTR, as shown in Figure 9.

5. Visualization with texture
To better visualize the reconstruction results of our method,
we apply an off-the-shelf texture mapping method [12] to
our meshes on the UrbanScene3D dataset. The results are
presented in Figure 10.
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Figure 1. Qualitative comparison of depth estimation on DTU [3].

Figure 2. Qualitative comparison of depth estimation on Replica [9].
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Figure 3. Qualitative comparison of depth estimation on ScanNet [1].

Figure 4. Qualitative comparison of depth estimation on Waymo [11].
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Figure 5. Qualitative comparison of depth estimation on UrbanScene3D [5].

Figure 6. Qualitative comparison of geometric reconstruction on Replica [9].
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Figure 7. Qualitative comparison of geometric reconstruction on Waymo [11].

Figure 8. Qualitative comparison of geometric reconstruction on UrbanScene3D [5].
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Table 1. Quantitative results on Waymo [11]. The metrics for COLMAP, F2NeRF, and StreetSurf are sourced from the StreetSurf paper.
Note that their evaluations are conducted in LiDAR space, whereas ours and other baselines are in image space. While the assessment
results from both approaches should be closely aligned, they may not be identical. We report their metrics for reference.

Sequence COLMAP F2-NeRF StreetSurf Marigold Depth-Anything Depth-Anything v2 MVSNet IGEV-MVS Metric3D SparseDC Ours

seg1006130.. 7.10 8.87 2.99 2.92 2.42 2.76 15.53 4.13 2.29 7.93 2.11
seg1027514.. 7.47 16.52 2.91 2.95 2.70 2.77 13.98 6.06 2.67 10.54 2.47
seg1067626.. 9.06 35.59 4.34 5.74 5.29 5.50 13.95 9.55 4.57 17.36 5.00
seg1137922.. 12.39 20.10 5.70 7.41 6.08 6.57 13.35 10.77 5.01 16.85 5.61
seg1172406.. 13.62 9.00 2.57 2.31 1.88 2.16 16.73 4.15 1.49 7.40 1.57
seg1287964.. 10.34 6.73 3.19 3.59 3.27 3.34 10.14 5.99 3.39 10.52 3.05
seg1308545.. 8.64 15.50 4.12 3.81 3.52 3.66 14.15 6.12 2.91 9.94 3.18
seg1314219.. 6.75 19.30 3.48 4.27 3.82 3.81 12.61 7.18 3.60 12.19 3.28
seg1319679.. 7.63 23.50 4.76 4.73 4.31 4.45 14.46 5.58 3.67 11.11 3.99
seg1323841.. 7.32 20.19 3.13 3.57 3.47 3.44 12.88 6.74 3.33 12.20 2.95
seg1347637.. 5.93 21.72 1.84 2.74 2.75 2.66 17.72 2.54 2.09 5.19 1.85
seg1400454.. 8.08 39.85 3.29 2.89 2.63 2.72 11.66 6.07 2.58 11.18 2.43
seg1434813.. 8.48 35.96 4.74 5.93 6.19 6.20 17.82 6.05 4.50 10.79 4.30
seg1442480.. 7.85 36.35 2.97 3.70 3.40 3.40 12.92 7.06 2.98 12.80 2.96
seg1486973.. 5.52 3.53 2.82 2.25 1.72 2.10 18.86 3.15 1.70 6.71 1.48
seg1506235.. 7.84 27.61 2.40 2.36 2.19 2.12 13.32 6.02 2.22 11.00 1.83
seg1522170.. 11.28 16.66 4.87 5.49 5.30 5.58 17.53 6.75 4.61 11.72 4.35
seg1527063.. 2.62 7.82 1.98 1.80 1.56 1.81 20.80 3.83 1.38 7.38 1.32
seg1534950.. 4.31 7.80 2.56 2.94 2.67 2.80 14.00 4.48 2.29 7.53 1.92
seg1536582.. 6.57 10.41 2.47 1.94 1.54 1.76 20.86 3.15 1.48 7.44 1.46
seg1586862.. 5.94 18.78 2.60 3.16 2.98 3.14 14.71 5.45 2.53 8.64 2.47
seg1634531.. 5.31 11.85 2.23 2.33 1.97 2.16 15.59 3.59 1.53 7.54 1.79
seg1647019.. 10.36 12.25 4.31 4.64 4.20 4.27 14.20 7.28 3.88 12.05 3.74
seg1660852.. 5.11 4.72 3.91 3.50 2.92 2.93 17.28 4.23 2.62 7.95 2.68
seg1664636.. 6.54 13.86 2.26 2.53 2.54 2.61 17.42 4.04 1.94 7.45 1.66
seg1776195.. 14.52 25.24 3.90 4.22 3.72 3.76 12.04 7.24 3.58 12.24 3.56
seg3224923.. 5.42 7.16 3.53 3.00 2.43 2.72 14.79 4.49 2.07 8.57 2.21
seg3425716.. 18.81 30.68 3.00 3.67 3.20 3.03 18.46 7.55 3.23 9.94 2.95
seg3988957.. 6.07 5.66 3.30 3.36 2.95 2.98 12.66 5.78 3.07 10.91 2.90
seg4058410.. 5.46 7.02 2.62 3.05 3.00 2.92 12.62 4.62 2.37 8.24 2.48
seg8811210.. 7.16 27.30 3.83 3.28 2.94 3.04 16.42 6.40 2.75 10.75 2.70
seg9385013.. 9.10 49.34 4.52 5.03 4.34 4.42 17.68 9.89 4.08 14.63 4.33

Average 8.08 18.65 3.35 3.60 3.25 3.36 15.22 5.81 2.89 10.21 2.83

Table 2. Quantitative results on ScanNet [1].

COLMAP Manhattan-SDF MonoSDF Marigold Depth-Anything Depth-Anything v2 Metric3D SparseDC NeuralRecon SimpleRecon MVSNet IGEV-MVS Ours

0050 00 0.563 0.673 - 0.669 0.674 0.669 0.507 0.250 0.661 0.718 0.075 0.391 0.750
0084 00 0.631 0.630 - 0.733 0.692 0.863 0.516 0.204 0.805 0.881 0.066 0.600 0.732
0580 00 0.590 0.632 - 0.627 0.688 0.644 0.441 0.245 0.484 0.542 0.137 0.512 0.720
0616 00 0.365 0.472 - 0.543 0.597 0.578 0.437 0.179 0.518 0.590 0.077 0.430 0.596

Average 0.537 0.602 0.733 0.643 0.663 0.689 0.475 0.220 0.617 0.683 0.089 0.483 0.700
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Table 3. Quantitative results on Replica [9].

MonoSDF Marigold Depth-Anything Depth-Anything v2 Metric3D SparseDC MVSNet IGEV-MVS Ours

room 1 - 0.61 0.79 0.86 0.77 0.25 0.54 0.84 0.84
office 0 - 0.52 0.69 0.71 0.47 0.29 0.73 0.85 0.90
office 2 - 0.58 0.52 0.62 0.57 0.23 0.56 0.78 0.82

Average 0.86 0.57 0.67 0.73 0.61 0.25 0.61 0.82 0.85
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Figure 9. Results of our method based on PixSfM.

Figure 10. Visualization of our results with texture from texture mapping on UrbanScene3D [5].
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