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Neuro-3D: Towards 3D Visual Decoding from EEG Signals

Supplementary Material

1. EEG Data Preprocessing001

In this section, we introduce the details of EEG prepro-002
cessing pipeline. During data acquisition, static 3D im-003
age and dynamic 3D video stimuli were preceded by a004
marker to streamline subsequent data processing. The con-005
tinuous EEG recordings were subsequently preprocessed006
using MNE [5]. The data were segmented into fixed-007
length epochs (1s for static stimuli and 6s for dynamic stim-008
uli), time-locked to stimulus onset, with baseline correction009
achieved by subtracting the mean signal amplitude during010
the pre-stimulus period. The signals were downsampled011
from 1000 Hz to 250 Hz, and a bandpass filter (0.1–100 Hz)012
was applied in conjunction with a 50 Hz notch filter to miti-013
gate noise. To normalize signal amplitude variability across014
channels, multivariate noise normalization was employed015
[6]. Consistent with established practices [8], two stimu-016
lus repetitions were treated as independent samples during017
training to enhance learning, while testing involved aver-018
aging across four repetitions to improve the signal-to-noise019
ratio, following principles similar to those used in Event-020
Related Potential (ERP) analysis [11].021

2. Evaluation Metrics for Reconstruction022

Benchmark023

To assess the quality of the generated outputs, we adopt the024
N-way, top-K metric, a standard approach in 2D image de-025
coding [1, 2, 8]. For 2D image evaluation, a pre-trained026
ImageNet1K classifier is used to classify both the generated027
images and their corresponding ground truth images. Simi-028
larly, we utilize data from Objaverse [3] to pre-train a Point-029
Net++ model [9]. To ensure classifier reliability, the net-030
work is trained on all Objaverse data with category labels,031
excluding the test set used in our study. The point cloud032
data corresponding to the 3D objects is sourced from [12].033
During evaluation, both the generated point clouds and their034
corresponding ground truth point clouds are classified us-035
ing the trained network. The results are then analyzed to036
confirm whether the reconstructed object is correctly iden-037
tified within the top K categories among N selected. For038
the efficiency of evaluation, we utilize data from the first039
five subjects to train and evaluate the reconstruction model.040
Moreover, a distinct feature of the diffusion model is its de-041
pendence on initialization noise, which can influence the042
generated outputs. We perform five independent inferences043
for each object and compute the average N-way, top-K met-044
ric across these runs. Additionally, to capture the potential045
best-case performance, we identify the optimal result based046
on the classifier’s predicted scores across the five inferences047
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Figure 1. The results of individual analysis. (a) presents the top-
1 and top-5 accuracies for the object classification task across 12
subjects, while (b) depicts the top-1 and top-2 accuracies for the
classification task. The blue line in each panel indicates chance-
level performance, and the red line represents the average perfor-
mance across all subjects.

and compute the N-way, top-K metric. 048

3. Analysis of Individual Difference 049

We present the performance variability across individuals 050
on two classification tasks, as illustrated in Fig. 1. On both 051
tasks, individual performance consistently exceeds chance 052
level, demonstrating that EEG signals encode visual per- 053
ception information and that our method effectively extracts 054
and utilizes this information for decoding. Notably, per- 055
formance varies across tasks for the same individual. For 056
instance, participant S12 performs significantly below av- 057
erage in object classification but achieves above-average re- 058
sults in color classification, suggesting distinct neural mech- 059
anisms underlying the processing of different visual at- 060
tributes and their representation in EEG signals. 061

Furthermore, it has been widely confirmed that EEG sig- 062
nal has substantial individual variations [4, 7, 10]. As shown 063
in Fig. 1, significant differences are observed between in- 064
dividuals performing the same task, particularly in object 065
classification, where S03 and S11 exhibit superior perfor- 066
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Figure 2. More results reconstructed by Neuro-3D with different samplings trials, and the corresponding ground truth. The sampling
variations arise either from results obtained across different subjects or from inference outputs of the diffusion model for the same subject
using distinct noise initializations.
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mance, while S08, S09 and S12 fall markedly below av-067
erage. Similar variability is observed in the color classifi-068
cation task, albeit to a lesser extent. These results under-069
score the pronounced inter-subject differences in EEG sig-070
nals and highlight a critical challenge for cross-subject EEG071
visual decoding tasks, where performance remains subopti-072
mal. Addressing this variability is a key direction for future073
research.074

4. More Reconstructed Samples075

Additional reconstructed results alongside their correspond-076
ing ground truth point clouds are presented in Fig. 2.077
The proposed Neuro-3D framework exhibits robust perfor-078
mance, effectively capturing semantic categories, shape de-079
tails, and the overall color of various objects.080

5. Analysis of Failure Cases081

(a) Failure Cases 1

(b) Failure Cases 2
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Figure 3. Failure cases. (a) highlights reconstructions with signif-
icant loss of fine details, while (b) demonstrates several instances
of incorrect semantic category prediction.

Fig. 3 illustrates representative failure cases, categorized082
into two principal types: inaccuracies in detailed shape pre-083
diction and semantic reconstruction errors. Despite these084
limitations, certain features of the stimulus objects, includ-085
ing shape contours and color information, are partially pre-086
served in the displayed reconstructed images. These short-087
comings primarily arise from the inherent challenges of the088
low signal-to-noise ratio and limited spatial resolution of089
EEG signals, which constrain the performance of 3D object090
reconstruction. Addressing these issues presents a promis-091
ing direction for future improvement.092
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