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Supplementary Material

A. Qualitative Results and Video
Please see the accompanying supplementary video for an
introduction and walkthrough of our approach, as well as
additional qualitative results. This video shows renders of
our simulation-ready garments on unseen motion sequences
with outdoor and indoor environment maps. This demon-
strates the ability of our method to generalize to novel poses
and various lighting conditions. We provide a side-by-side
comparison against the original “3D Gaussian Splatting”
(3DGS-Only) method. Not only is the shading baked into
the garments produced by 3DGS-Only, they are also not re-
lightable. Lastly, we demonstrate 360 relighting, where the
garments are dynamically relit with a rotating illumination
map.

B. Mesh-Embedded 3DGS Reconstruction
In this section, we provide additional details on the mesh-
embedded 3DGS representation and optimization approach.
Mesh Reconstruction: We remesh the garment to 11-18k
vertices using Houdini [5], though any remeshing software
would suffice. After remeshing, we unwrap the mesh in
Blender [1] to obtain the UV map.
Mesh-embedded Gaussian Splat Representation: Once
we have sampled Gaussians on the mesh surface, we follow
Qian et al. [10] to define each Gaussian in the local coordi-
nate frame of its parent triangle on the mesh. This allows us
to deform the Gaussians as the mesh deforms at test time.
The origin of the local coordinate frame τ is the centroid
of the triangle. The face orientation is defined with three
vectors: one of the edges normalized, the normal vector of
the triangle, and their cross product. They are concatenated
as column vectors to form the rotation matrix R ∈ SO(3).

We represent each Gaussian’s rotation quaternion r ∈ H,
position µ ∈ R3, and scale s ∈ R3

+ in the local coordinate
frame of its parent triangle. To render the Gaussians, we
transform the Gaussian parameters into world coordinates
with the following equations:

r′ = Rr, (1)
µ′ = kRµ+ τ , (2)
s′ = ks, (3)

where k ∈ R+ is the scale of the triangle defined as B+H
2 ,

where B and H are the base and height of the triangle, re-
spectively.
3DGS Initialization: We initialize our Gaussian model
with 1 million splats on the surface of the reconstructed full-
body mesh. Note that only the subset of splats that belong

to the garment segmented mesh are kept for inference, so in
practice we use much fewer than 1 million splats to model
the garment. Following [7] we initialize opacity α to 0.1,
and initialize only the first three coefficients of spherical
harmonics ϕ using randomly sampled RGB color values,
setting the remaining coefficients to zeros. We sample RGB
colors uniformly from c ∼ U(0.5, 0.7)3 where c ∈ [0, 1]3

is the RGB color of the Gaussian splat. The local Gaussian
position is computed by transforming the sampled splat po-
sitions from world to local coordinates. Following [10], we
initialize the local Gaussians with identity rotation and unit
scale s.
3DGS Optimization: We apply a mask regularization loss
term as described in Sec. 3.2 of the main document. The
kernel size Kfg is computed as the image height scaled by a
mask erosion factor γfg. The loss is weighted by λfg.

Our optimization largely follows the settings from [7],
with some modifications to the values. The full list of opti-
mization parameters and their values are provided in Tab. 1.
In addition to the original implementation, we also provide
the hyperparameters to additional modules included in our
implementation in Tab. 2.

Table 1. 3DGS Optimization Settings: We provide the optimiza-
tion parameters and their values for 3DGS optimization. The pa-
rameters are derived from the original 3DGS implementation [7],
with some modifications to the values.

Parameter Setting

num. optimization iterations 30000
optimizer Adam
position learning rate (init) 0.5e-4
position learning rate (final) 1.0e-7
position learning rate (max steps) 30000
feature learning rate 0.005
opacity learning rate 0.005
scaling learning rate 0.005
rotation learning rate 0.005
SSIM loss weight λSSIM 0.2
SH increase frequency 500

Caveats: After 3DGS optimization described in Sec. 3.2
of the main document, the mesh is culled to remove trian-
gles deemed to not belong to the garment of interest. Due
to the nature of global 3DGS optimization, some Gaussians
that contributed to the color of the garment may belong to
triangles representing other parts of the reconstructed body
mesh. Thus culling triangles after 3DGS optimization sub-
tly reduce the opacity in some areas of the garment (e.g. bot-



Table 2. Additional 3DGS Optimization Settings: We provide
the optimization parameters and settings for additional modules
introduced in our implementation below.

Parameter Setting

mask erosion factor γfg 0.03
mask loss weight λfg 0.1

tom of the T-shirt as visible in Fig. 3 or beside the left pocket
of the cardigan in Fig. 1 of the main document). We be-
lieve this is a minor issue and not a fundamental limitation
of the method. For instance, to improve surface opaque-
ness for each pixel, we may eliminate contributions from
Gaussians on back-facing triangles representing the interior
of the garment, thus resulting in a single front facing cloth
layer remaining, responsible for the foreground reconstruc-
tion during the 3DGS optimization step.

C. PBR Appearance Reconstruction

We provide implementation details for the comparisons
with Lambertian and Disney BRDF [2] PBR models in Fig
3. (b) and (c), as well as our PBR model (d) from the main
document. We use Mitsuba [6] as our differentiable ren-
derer. We report hyperparameters for optimization in Tab. 3.
We use a constant lighting model to approximate the over-
all lighting employed by our capture system, as described in
Sec. 4 of the main document. The base color generated by
the neural network (Sec 3.3 of the main document), despite
being free from baked-in lighting and shadowing, could still
contain colors influenced by the lights. To account for such
color scaling, we additionally optimize the RGB radiance
of the constant lighting model. We report the initial and op-
timized parameters per model in Tab. 4 and Tab. 5, respec-
tively. We also report PSNR values for the different PBR
models, per garment, in Tab. 6.

Table 3. Optimization Settings for Shading Reconstruction:
We provide the optimization parameters for shading reconstruc-
tion, which are implemented in the Mitsuba [6] differentiable ren-
derer.

Parameter Setting

num. optimization iterations 3000
optimizer Adam
learning rate 0.01
samples per pixel 4
integrator type path
lighting model constant

Table 4. PBR Parameter Initialization: We report the initializa-
tions used for each PBR model. Parameters that are not listed use
the default values in Mitsuba.

PBR Model Parameter Setting

Lambertian lighting radiance (1.00, 1.00, 1.00)

Disney BRDF [2]

lighting radiance (1.00, 1.00, 1.00)
roughness 0.8
sheen 1.4
specular 0.0

Ours

lighting radiance (1.00, 1.00, 1.00)
roughness 0.8
sheen 1.4
sheen color (0.75, 0.73, 0.27)
sheen roughness 0.5
specular 0.0

D. Gaussian—PBR Hybrid Rendering
Reconstruction Error: Dropping the subscript t for sim-
plicity, we can write the reconstruction error ϵ (when com-
pared to the real world images) as

ϵ = I − Î

= I − (h(G) + l(S))

= I − (G− l(G))− l(S)

= l(G)− l(S)︸ ︷︷ ︸
additional error

+ I −G︸ ︷︷ ︸
3DGS error

. (4)

For training frames, given that I−G is small, this suggests
that the error mostly occurs in PBR reconstruction. It also
suggests that it is sufficient for the PBR reconstruction to
approximate the ground truth images only in the low fre-
quency mode. At test time, I −G is no longer small due to
baked-in lighting and shadowing in G. Intuitively, however,
we expect novel shading missing from G to be reintroduced
by l(S)− l(G). Additional error could be introduced at test
time from mismatched geometry since our method does not
rely on tracking.

E. Experiments
Optimization and Inference Efficiency: We report perfor-
mance and runtime efficiency in Tab. 7. All 3DGS render-
ing is performed on an NVIDIA A100 GPU, while all PBR
rendering and simulation is run on an NVIDIA RTX 3080
GPU. Note that while the reported timing is not real time,
each of the components have real-time counterparts, mak-
ing the method compatible with real-time pipelines.
Simulation: We use eXtended Position Based Dynam-
ics (XPBD) [9] as our choice of simulator. The simula-
tion parameters are provided in Tab. 8. In all examples
presented in the main paper, the material parameters were



Table 5. Optimized PBR Parameters: We report the optimized parameters per PBR-model, for each garment.

Garments

PBR Model Parameter T-Shirt Dress Fleece Cardigan

Lambertian lighting radiance (4.15, 5.16, 5.27) (1.39, 1.43, 1.44) (7.07, 6.82, 8.18) (3.56, 3.59, 5.53)

Disney BRDF [2]

lighting radiance (3.82, 7.27, 7.56) (1.32, 1.44, 1.51) (6.32, 5.97, 6.23) (3.00, 3.02, 4.02)
roughness 0.09 0.00 1.00 0.85
sheen 0.56 4.50 0.57 1.46
sheen tint 0.66 0.00 0.39 0.56

Ours

lighting radiance (2.85, 3.34, 3.31) (1.02, 1.12, 1.24) (4.86, 4.75, 5.01) (2.88, 2.90, 4.62)
roughness 0.97 0.53 1.00 0.99
sheen 0.35 1.05 0.22 0.40
sheen color (0.35, 0.22, 0.15) (0.51, 0.48, 0.34) (0.23, 0.24, 0.13) (0.39, 0.38, 0.13)
sheen roughness 0.66 0.76 0.62 0.42

Table 6. Quantitative Results on Shading Reconstruction: We
report PSNR per-PBR model, on each garment.

PBR Model T-Shirt Dress Fleece Cardigan

Lambertian 34.76 21.94 33.01 26.55
Disney BRDF [2] 37.57 22.26 34.29 27.10
Ours 37.67 22.93 34.40 27.23

Table 7. Optimization and Inference Efficiency: We report the
efficiency for both optimization and inference of our method.

Stage Module Runtime

Optimization 3DGS optimization 3h
PBR optimization 12m

Inference

XPBD Simulation 11 FPS
PBR rendering 3.2 FPS
3DGS rendering 1.6 FPS
Image filtering 14.4 FPS

kept constant. However, to better approximate the behavior
of thicker garments like the fleece and cardigan we set the
bending stiffness to be x10 larger than what is used for the
t-shirt and dress simulations in Fig. 3.

Table 8. Simulation Parameters: We provide the parameters that
we use for garment simulation. We use the XPBD simulator [9]
with spring constraints for both stretching and bending.

Parameter Setting

cloth-body offset 0.4 cm
frame rate 30
substeps per frame 30
XPBD iterations 20

Baseline Setup: For Animatable Gaussians, we train on
all views with a video sequence of diverse poses contain-
ing roughly 8k frames. SCARF is a NeRF-based method
that reconstructs animatable clothed humans from monocu-
lar video. We train on the same training data as was used
for our method, excluding extreme camera poses (because
PIXIE, the method for SMPL body estimation, struggles
with extreme camera poses [3] ). Although it is a method
for monocular video, we reframe our multi-view static pose
setting as a monocular video by concatenating all the views
into a video, as done in [11]. Animatable Gaussians takes 3
days to train. SCARF takes 14 hours.
Additional Metrics: We report additional metrics, struc-
tural similarity (SSIM) [13] and peak signal-to-noise ratio
(PSNR), comparing with baselines and ablations in Tab. 9.
Note that our method does not optimize for the garment rest
shape. Instead, we use the reconstructed geometry as the
rest shape for simulation. While our results are more crisp
and produce more realistic dynamics (see Fig 7. of the main
document), our method can produce sagging and in general
is not guaranteed to match the geometry from ground truth
frames in novel poses. We believe this is the reason why our
method (and ablated versions of it) achieve lower scores on
metrics that are sensitive to pixel alignment. Nevertheless,
we report these metrics for reference.
Novel motion: We evaluate the generalization of our gar-
ments to novel motions in Fig. 3. Please see the supplemen-
tary video to view the motion sequences.
Lighting 360: We show our garments relit under different
rotations of the environment in Fig. 4. Please see the sup-
plementary video for additional renders.
Blur Analysis: We analyze the effect of blur kernel size on
training reconstruction for the cardigan example. We report
feature similarity (FSIM) [12] index of our reconstruction
in relation to the blur kernel size in Fig. 1. Large amount
of blur reduces the reconstruction error (Eq. (4)) since it is



Table 9. Quantitative Comparisons: We report additional met-
rics comparing with existing work and ablated versions of our
method. Note that our method (and ablations) do not optimize
for the garment rest shape. We believe this is the reason that base-
lines outperform on metrics that are sensitive to pixel alignment.

Method SSIM↑ PSNR↑
SCARF [4] 0.937 25.96
Animatable Gaussians [8] 0.945 29.75

3DGS-Only 0.938 28.62
PBR-Only 0.947 28.65
Ours 0.939 28.37

Figure 1. Blur Analysis. We analyze the reconstruction perfor-
mance on the training frame of the cardigan garment, across dif-
ferent levels of blur. Compared to no blur, our selected kernel
size of 71 pixels (shown in red) improves the FSIM metric by 8%.
Increasing the blur kernel further produces no more than a 2%
increase in FSIM, while decreasing the generalizability of the ap-
pearance model to novel poses. FSIM for l(S) and h(G)+average
color are plotted for reference showing that our model produces
quantitatively better results at all blur levels.

less challenging for PBR reconstruction to approximate an
overly blurred image. However, in the meantime, this in-
troduces more contribution from 3DGS, which prevents us
from generalizing to novel poses at testing time. To strike a
balance, we select a blur kernel size 71×71 for our training
image with resolution 4096×2668. We use the same kernel
size for all our examples, however the optimal blur kernel
size ought to vary by garment type. Garments with high-
frequency details (thick wool knits) necessitate larger ker-
nels to accurately capture these intricate features. One way
to automate the process of choosing a garment-dependent
kernel size is by progressively blurring the input image un-
til its gradient magnitudes fall below a threshold, indicating
that high-frequency details have been removed. We leave
this extension to future work.
ActorsHQ dataset: We show that our method works on
the ActorsHQ dataset in Fig. 2 showing the reconstruc-

Figure 2. ActorsHQ example. This figure demonstrates our
method applied to the popular ActorsHQ dataset.

tion for an unseen pose. The quality metrics FSIM=0.938,
LPIPS=0.0227, PSNR=33.99, SSIM=0.977 are similar to
those in the main paper and slightly outperform PhysAvatar
for the selected frame.
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[6] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin
Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet,
Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3
renderer, 2022. https://mitsuba-renderer.org. 2

[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1

[8] Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Ani-
matable gaussians: Learning pose-dependent gaussian maps
for high-fidelity human avatar modeling. In CVPR, 2024. 4

[9] Miles Macklin, Matthias Müller, and Nuttapong Chentanez.
Xpbd: position-based simulation of compliant constrained



Figure 3. Novel Motion. We evaluate our method on novel motion sequences.

Figure 4. Lighting 360◦. We show our garments under different rotations of the environment map.

dynamics. In Proceedings of the 9th International Confer-
ence on Motion in Games, pages 49–54, 2016. 2, 3

[10] Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide
Davoli, Simon Giebenhain, and Matthias Nießner. Gaus-
sianavatars: Photorealistic head avatars with rigged 3d gaus-
sians. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 20299–
20309, 2024. 1

[11] Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J.
Black, Bernhard Thomaszewski, Christina Tsalicoglou,

and Otmar Hilliges. Gaussian garments: Reconstruct-
ing simulation-ready clothing with photorealistic appearance
from multi-view video, 2024. 3

[12] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang.
Fsim: A feature similarity index for image quality assess-
ment. IEEE Transactions on Image Processing, 20(8):2378–
2386, 2011. 3

[13] Wang Zhou. Image quality assessment: from error measure-
ment to structural similarity. IEEE TIP, 13:600–613, 2004.
3


