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1. Implementation Details

We report implementation details from different aspects,

and the source code will be made publicly available upon

acceptance.

Architecture Details. In our proposed Multi-Modal Face

Forgery Detector (M2F2-Det), we employ the Efficientnet-

B4 (Efficient-B4) [7] as the deepfake encoder ED. Then, we

use CLIP/ViT-L-patch14-336 [2] as the pre-trained CLIP

image encoder EI and text encoder ET . The LLM is Vicuna-

7b, denoted as L. We integrate EI and L in the similar way

of LLaVA [5], in which two different MLP layers project

the CLIP image feature FI and deepfake encoder feature

F
0 into HV ∈ R

576×4096 and HF ∈ R
1×4096, respectively.

Interestingly, we observe F
0 and f

0 yield nearly identical

performance in text generation, likely because both encode

domain-relevant deepfake knowledge, allowing the LLM

to access similarly informative visual cues for generating

descriptive outputs. EA consists of 4 transformer-encoder

blocks, and we obtain output features from 10th, 14th, and

22nd layers of EI . These features are fed into EA, and such

design choice is detailed in Tab. 3. Also, we feed EA with

outputs from last three convolution blocks of ED. As for the

forgery prompt learning, we set the length of trainable to-

kens, including general forgery tokens and specific forgery

tokens, as 6. First 9 layers of ET have 4 trainable layer-wise

forgery tokens as inputs.

Training Details. We conduct the three-stage training on

8 A6000 48G GPUs. First, we train the deepfake encoder

ED, CLIP Text encoder ET and Bridge Adapter EA using

the cross entropy for deepfake detection. The learning rate

is 1e − 3, and the optimizer is the Adam optimizer. Sec-

ondly, we conduct the feature alignment between HV and

HF on DDVQA. Specifically, only MLP layers are trained,

while other components are frozen. We optimize parame-

ters by maximizing the likelihood of target answer tokens

in Eq. 7 of the main paper. The learning rate is set as

1e−4 for 5 epochs. Empirically, such a small training epoch

number is enough to converge the training on the DDVQA

dataset. Thirdly, we fine-tune the M2F2-Det via instruction-

tuning [5] on DDVQA, where only MLP layers and LLM are

trained by using LoRA [4]. The supervision is the same as

that in the second stage.

Training Samples. The DDVQA dataset is constructed

based on common-sense reasoning, which makes the

judgment about whether images are real or fake based on

visible facial artifacts. In other words, it can fail when

the forgery pattern is subtle and cannot be described well

Figure 1. A training sample illustration. (a) A DDVQA image-

text pair. In textual descriptions, black and red sentences are orig-

inal and added contents, respectively. (b) The multi-run formula-

tion used in M2F2-Det’s training procedure.

only by textual explanations. Therefore, we obtain images

with subtle artifacts and then add sentences into their

corresponding textual descriptions, i.e., ‘‘Based on

the learned representation, this image

is real/fake.’’. This process is illustrated in

Fig. 1. The correlation between this newly added sentence

and HF is learned by M2F2-Det via training. Also, we

formulate DD-VQA samples, i.e., image-text pairs, based

on multi-run templates as defined in the LLaVA training

and use such updated samples to train the M2F2-Det.

2. Additional Ablation Study

Different Specified Deepfake Encoder. Tab. 1 reports

M2F2-Det’s performance using different deepfake back-

bones. Specifically, Efficient-4B obtains the best perfor-

mance — 2.55% higher AUC score than XceptionNet on

FF++(c40). Therefore, we use Efficient-4B as the specified

deepfake encoder of the M2F2-Det. Also, M2F2-Det’s per-

formance is not impacted largely by the choice of different

backbones, demonstrating its robustness to different archi-

tectural designs.

Universal Forgery Prompts. Universal Forgery Prompts

(UF-prompts) are composed of general forgery tokens and

specific forgery tokens, which generate forged attention

maps that localize forgery regions. We report their forgery

localization performance in Tab. 2. More formally, we



Backbones FF++ (c23) FF++ (c40)

Metric: Acc (% ↑) / AUC (% ↑)

DenseNet-121 96.54 98.33 90.13 92.31

XceptionNet 97.23 98.10 91.45 94.03

ViT-B 95.13 96.25 89.11 91.97

Efficient-B4 98.79 99.34 93.83 96.58

Table 1. Different backbones used in M2F2-Det’s implementa-

tion.

UF-Prompts
LF

Test set AUC(%)

Gen. Spe. DF F2F FS NT

1 71.13 55.78 52.34 68.08

2 ✓ 85.03 80.78 71.11 79.78

3 ✓ 82.57 77.37 74.57 81.50

4 ✓ ✓ 89.65 83.68 75.20 85.34

5 ✓ ✓ ✓ 93.65 89.74 82.74 87.74

Table 2. Forgery localization performance on 4 manipulation

types of FF++(c23). Each model is trained on FF++(c23). [Keys:

UF-Prompts: universal forgery prompts; Gen.: general forgery to-

ken; Spe.: specific forgery token; LF: layer-wise forgery tokens;

Best Results.]

Fused Layers FF++

SF 6th 86.3

SF 10th 86.8

SF 14th 89.0

SF 22nd 89.7

MF 14th, 22nd 90.3+0.6

MF 10th, 14th, 22nd 91.1+1.4

Table 3. Different fusion layers of the Bridge Adapter. [Keys: SF:

single fusion, MF: multiple fusion].

download manipulation masks from FF++ and binarize

them as the ground truth. Then, we compute the AUC

score between such ground truths and forged attention maps

generated from different model variants. Specifically, line

#1 denotes the localization performance of the pre-trained

CLIP, which is used as the baseline. Its performance is

worse than using general and specific forgery tokens (i.e.,

line #2 and #3) on Face2Face (F2F) manipulation by

25.00% and 21.59% AUC scores, respectively. Then, we

observe the performance gain from line #4, which indi-

cates the joint usage of specific and general forgery tokens

achieves better performance than using them separately. It

is worth mentioning that layer-wise trainable tokens fur-

ther enhance the localization performance of UF-prompts,

which is shown by line #5 quantitatively and Fig. 3 quali-

tatively.

Bridge Adapter Fusion Strategy. The Bridge Adapter

connects the deepfake encoder with the CLIP image en-

coder, which are CLIP/ViT-L-patch14-336px and Efficient-

4B in M2F2-Det, respectively. Tab. 3 reports the per-

formance of different fusion strategies in terms of con-

structing the Bridge Adapter. Specifically, the single fu-

sion represents only integrating the one single layer output

from the pre-trained CLIP image encoder into the Bridge

Adapter. The multiple fusion strategy denotes integrating

multiple layer outputs from the pre-trained image encoder

into the Bridge Adapter. Based on Tab. 3, it shows the latter

layer output from the CLIP image encoder helps more on

the performance, likely because these layers capture more

global information, including forgery patterns. Addition-

ally, the multi-fusion strategy leverages more of the pre-

trained CLIP image encoder embeddings, ultimately en-

hancing overall performance.

FF++ (c40) Celeb-DF WildDeepfake

ACC↑ AUC↑ ACC↑ AUC↑ ACC↑ AUC↑

XceptionNetDD
89.25 92.24 62.41 64.30 62.52 64.53

XceptionNetM2
91.38 93.40 65.03 67.34 65.00 69.75

HiFi-NetDD
91.25 95.14 69.37 71.00 69.27 70.03

HiFi-NetM2
91.48 95.21 71.17 74.68 68.77 72.13

RECCEDD
92.08 95.36 69.46 70.21 66.57 69.46

RECCEM2
93.06 95.89 71.46 72.76 65.44 69.57

Table 4. The enhanced deepfake detection performance. DD and
M2 denote detectors enhanced by visual embedding from DDVQA-

BLIP [9] and M2F2-Det, respectively. [Best Performance]

3. Enhanced Deepfake Detection

Tab. 4 shows the enhanced deepfake detection perfor-

mance compared with DDVQA-BLIP. Specifically, this ta-

ble shows visual embedding from our M2F2-Det, i.e., F0,

outperforms DDVQA-BLIP [9], regardless different detec-

tors. This is because F
0 is more effective in detection, en-

sembling CLIP embedding, and domain knowledge than

visual embedding from DDVQA-BLIP, which is naively

fine-tuned for text generation. Even without extract mod-

ifications introduced in DDVQA-BLIP, M2F2-Det outputs

deepfake scores, which obtain SoTA performance.

4. Additional Generated Textual Explanations

Fig. 2 shows textual explanation generation capabilities of

our M2F2-Det can generalize to unseen forged facial im-

ages. More formally, we offer additional qualitative re-

sults on images generated by StyleGANv2 and recent dif-

fusion models like IP-adapter [8]. The comparison to ex-

isting works shows that M2F2-Det is accurate in the textual

judgment and convincing in the explanations. Specifically,

in the second image, the DDVQA-BLIP [9] fails to identify

the forged image and provides erroneous descriptions. In

the fourth image, the GPT-4O mistakenly classifies the in-

put image as fake due to the inconsistent texture. In these

two scenarios, our proposed M2F2-Det generates the cor-



The person’s skin looks a bit fake 
because there are stains on the
person's face.

This image appears fake due to the 
unnaturally blurred and textureless eye 
regions, inconsistent facial details, and 
overall lack of realistic lighting and 
depth, all common artifacts of AI-
generated forgeries.

The image appears to be an altered 
version of a person‘s face. The person 
has blurry double vision, which is a sign 
of image duplication and not real. 

GT: Fake

GT: Fake

The image looks real. The person has 
complete face features. Those features 
are in good shape, size, and positioning. 
The person has smooth skin, arched 
eyebrows, round eyes, straight nose, full 
mouth.

The image shows signs of AI generation, 
including smooth skin, consistent 
lighting, irregular hair details, and a 
blurred, simplistic background. These 
traits suggest possible AI creation, 

This image is fake. This person has
overly There are stains or flaws on the 
person's face. There are areas looking 
unnaturally brighter.

The image looks fake. It looks
like a computer generated artist styled 
image. The person's mouth looks too
rigid to convey expressions. There are 
stains on the person’s face. The person‘s
eyebrows look blurry.

The image shows signs of AI generation, 
including overly smooth skin, poorly 
blended headgear, blurry background, 
and unrealistic lighting. These 
irregularities strongly suggest it was 
not captured naturally.

The image is not a genuine photograph.
The lighting is inconsistent; the 
President‘s face is overly bright. The 
shadows are not consistent with the 
rest of the scene. The necklace is overly 
large compared to what we've seen him 
wear.

DDVQA-BLIP GPT-4O M2F2-Det

The image looks real. The person has 
complete face features. Those features 
are in good shape, size, and positioning. 
The person has smooth skin, arched 
eyebrows, round eyes, straight nose, full 
mouth.

The image shows signs of AI generation.
It has overly saturated skin tones, 
inconsistent textures, and exaggerated 
facial details. These traits suggest 
possible post-processing or manipulation
via AI technique.

This image appears real due to natural 
facial asymmetries, realistic skin 
textures with wrinkles, and consistent 
lighting and shadows that align with the 
background scene. This should be a real
not AI-generated image.

GT: Fake

GT: Real

Figure 2. Additional textual explanation results. From top to bottom, the images are from Celeb-DF, DDVQA, Stable Diffusion, and a real

image.

Image CLIP FPLw/o LF FPL Image CLIP FPL w/o LF FPL Image CLIP FPL w/o LF FPL

Figure 3. Additional generated forged attention map. [Key: LF: Layer-wise forgery tokens.]

rect judgment along with a convincing description. More

qualitative results can be found on our project page.

5. Additional Forged Attention Map

We visualize additional forged attention maps in Fig. 3,

where the full version of FPL generates the most accurate

forged attention maps. For example, the mouth regions of

the first two subjects and the eyes region of the third subject

can be identified as forged by the FPL.

6. Limitations and Future Work

We empirically identify two limitations in our proposed

method, both of which present opportunities for future re-

search. First, while our model parsing approach delivers

excellent performance on the forged face image, it is worth

exploring its effectiveness in detecting other forged seman-

tic contents. Also, M2F2-Det’s explanation performance

should be evaluated on real faces with unusual decorations,

such as funny eyeglasses and silicone masks in the SiW-

Mv2 dataset [3].

Secondly, we use a three-stage training strategy to train

M2F2-Det, as detailed in Sec. 3.3 of the main paper. Al-

though such a training strategy is effective in optimizing

M2F2-Det in both detection and textual explanation perfor-

mance, it actually would be preferable to have an efficient

end-to-end training strategy.

Thirdly, M2F2-Det has two modality outputs, which can

have disagreements. For example, the explanation is This

image is fake while the fake probability is low from

the binary detection branch. We believe this can be a good

direction for the future work to resolve.

Fourthly, the full M2F2-Det takes an average of 0.35 sec-
onds per image, but M2F2-Det without LLM runs detec-
tion 66 frames per second (fps), on par with other detectors
(e.g., EfficientNet [7] runs 46 fps). The speed bottleneck
is the LLM, which only generates descriptions and can be
optional in practice: In general, users can use M2F2-Det
without the LLM for efficient SoTA detection performance;
for challenging samples, the full M2F2-Det assists with ex-
planations. In addition, we argue this limitation of inference
speed can be alleviated by using a more efficient LLM, e.g.,



MobileVLM [1]. Alternatively, one can propose an alterna-
tive approach using the frozen LLM to assist the detection
performance [6].
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