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SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion

Supplementary Material
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Figure 1. Channel and Spatial Attention.Our channel attention
mechanism (top part) utilizes average and maximum pooling op-
erations, followed by shared MLP layers. Similarly, our spatial
attention mechanism (bottom part) employs the same pooling op-
erations, paired with 7× 7 convolution layer.

A. Extended Technical Details001

A.1. Convolutional Enhancement Details002

In the convolutional enhancement module, we utilize 3D003
and 2D U-Nets to improve prediction performance. For the004
ground branch, we employ a 3D U-Net with two encoder005
and decoder layers. In the satellite branch, we use a 2D006
U-Net with three encoder and decoder layers.007

A.2. Fusion Module Details008

Our channel and spatial attention mechanisms used in the009
dual-path weight generator are inspired by CBAM [8], with010
the detailed architecture illustrated in Figure 1.011
Channel Attention. The channel attention operation is012
shown in the upper part of Figure 1. First, we compress013
the concatenated voxel features along the spatial dimen-014
sions using both average and maximum pooling operations,015
generating Favg

channel and Fmax
channel ∈ RD×1×1×1. These016

compressed features are then passed through shared MLP017
layers consisting of two MLP layers with a ReLU activa-018
tion function, producing two channel attention maps Wavg

c019
and Wmax

c ∈ RD×1×1×1. Finally, we sum the two maps to020
compute the channel attention weight Wc. Mathematically,021
the whole operation can be expressed as:022

Wc = MLP(AvgPool(F′3D
c ))+MLP(MaxPool(F′3D

c )) (1)023

where MLP is the shared MLP layers, AvgPool and024
MaxPool is average and maximum pooling operation, re-025
spectively.026
Spatial Attention. The spatial attention operation is shown027
in the lower part of Figure 1. Similar to the channel atten-028
tion operation, we compress the concatenated BEV features029

along the channel axis to obtain Favg
spatial and Fmax

spatial ∈ 030

R1×H×W . These features are concatenated and fed into a 031
convolutional layer with a 7×7 kernel, producing the spatial 032
attention weight Ws. The equation of the spatial attention 033
operation is shown as follows: 034

Ws = conv7×7(AvgPool(F′BEV
c ) c⃝MaxPool((F′BEV

c )))
(2) 035

where c⃝ is concatenate operation, while conv7×7 is convo- 036
lution operation with the 7× 7 kernel. 037

Additionally, in our probability network, the spatial at- 038
tention operation follows the same steps. However, since 039
the input features are voxel features, the convolutional layer 040
is replaced with a 3D dilated convolution. Moreover, the 041
MLP used in the weight generator is a 2-layer MLP with 042
ReLU activation. In the probability net, we utilize a basic 043
ResNet block [3] combined with a 2-layer MLP. 044

A.3. Loss Function Detail 045

Scene Class Affinity Loss. Our scene class affinity loss is 046
the same as previous work [2, 6]. The loss computes the 047
class-wise derivable precision, recall, and specificity. The 048
mathematical equation is: 049

Pc(p̂, p) = log

∑
i p̂i,c [pi = c]∑

i p̂i,c

Rc(p̂, p) = log

∑
i p̂i,c [pi = c]∑

i [pi = c]

Sc(p̂, p) = log

∑
i (1− p̂i,c) (1− [pi = c])∑

i (1− [pi = c])

(3) 050

where the p̂i,c is the predicted probability for the class c, 051
while pi is the ground truth. Pc and Rc denote the preci- 052
sion and recall, respectively, evaluating the performance of 053
voxels belonging to class c. And Sc is specificity, which 054
measures the performance of voxels not belonging to class 055
c. We get the scene class affinity loss Lscal by summing the 056
Pc, Rc, and Sc together as follows: 057

Lscal (p̂, p) = − 1

C

C∑
c=1

(Pc(p̂, p) +Rc(p̂, p) + Sc(p̂, p)) .

(4) 058
In our paper, we use the semantic label and binary geometry 059
label to obtain semantics affinity loss Lsem

scal and geometry 060
affinity loss Lgeo

scal , respectively, and add them together. 061
Cross-Entropy Loss. As mentioned in Section 3.5 of the 062
paper, we use weighted cross-entropy loss to compute three 063
losses: Lce, Lco, and Lbev . Our cross-entropy equation is 064
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with Sat.-corr.

w/o  Sat.-corr.

(a) BEV loss curve.

with Sat.-corr.

w/o  Sat.-corr.

(b) Scene class affinity loss curve.

with Sat.-corr.

w/o  Sat.-corr.

(c) Cross-entropy loss curve.

Figure 2. Loss curve with/without satellite correction strategy. The orange curves are the loss curves of SGFormer without the satellite
correction, while blue curves are the loss curves with satellite correction.

Channel Attention Spatial Attention Probability Net IoU mIoU Global Detail

✗ ✗ ✗ 43.90 15.59 28.43 8.10
✓ ✗ ✗ 44.85 16.25 29.19 8.71
✗ ✓ ✗ 44.88 16.12 29.97 8.05
✗ ✗ ✓ 44.95 16.45 29.06 9.12
✓ ✓ ✓ 45.01 16.68 29.31 9.29

Table 1. Ablation on components of fusion module.

Ground image backbone IoU mIoU

ResNet-50 44.30 16.14
EfficientNet-B7 45.01 16.68

Table 2. Ablation on different backbones.

expressed as follows:065

loss = −
N∑
c=1

wc log
exp (ŷc)∑N
i=1 exp (ŷi)

yc (5)066

where ŷ is input, y is the ground truth, and N denotes the067
class number. wc is the class weight that is inverse of class068
frequency.069

B. Additional Ablation Study070

In this section, we present the additional ablation analy-071
sis, which consists of three parts: adaptive fusion module,072
Backbone, and learning efficiency.073

B.1. Ablation on Adaptive Fusion Module074

Table 1 presents the ablation on detailed components of075
our adaptive fusion module. Overall, the integration of076
any component within our fusion module significantly en-077
hances the prediction accuracy of SGFormer. This im-078
provement arises because the two branches focus on dif-079
ferent aspects of the task; thus, introducing an adaptive080

weighting mechanism naturally brings substantial perfor- 081
mance improvement. Specifically, incorporating the chan- 082
nel attention network simultaneously improves the accu- 083
racy for both scene layout and small objects: the mIoU for 084
the ”global” category increases from 28.43 to 29.19, while 085
the mIoU for the ”detail” category improves from 8.10 to 086
8.71. This enhancement is attributed to the module’s ca- 087
pability to perform trade-offs at the object level, making 088
the fusion strategy more inclined to rely on the satellite 089
branch’s outputs for objects in the ”global” category and 090
on the ground branch for the ”detail” category. 091

The addition of the spatial attention network further 092
increases the accuracy of our method in capturing the scene 093
layout, increasing the mIoU from 28.43 to 29.97. This im- 094
provement is due to the spatial attention network’s ability 095
to balance the weights of the sensors across different re- 096
gions based on each sensor’s detection range, enabling our 097
method to generate a more comprehensive scene layout. 098

Finally, the incorporation of the probability net en- 099
hances the prediction accuracy across all categories. The 100
probability net adaptively identifies the more important vox- 101
els, thereby improving the overall learning efficiency of the 102
model. 103

B.2. Ablation on Image Backbone 104

Table 2 shows the comparison between different ground im- 105
age backbones, including EfficientNet-B7 [7] (used in SG- 106
Former) and ResNet-50 [3] (used in baseline methods such 107
as VoxFormer and Symphonize). The results highlight two 108
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key observations. First, EfficientNet-B7 achieves higher109
performance due to its more efficient architecture. Sec-110
ond, even when using ResNet-50, SGFormer still outper-111
forms baseline methods, demonstrating the superiority of112
our dual-branch framework.113

B.3. Ablation on Learning Efficiency114

Figure 2 shows the learning curves of our method with and115
without satellite correction strategy. We report all the losses116
we used in the training, including BEV loss, scene class117
affinity loss, and cross-entropy loss (summed with coarse118
loss). According to the figure, adding satellite correction119
operations can improve learning efficiency. This finding120
confirms what we mentioned about adding satellite correc-121
tion to warm up learning.122

C. Additional Visualization123

Figure 3 and Figure 4 presents the more visualiza-124
tion results from SemanticKITTI [1]. Moreover, we125
include qualitative results on the SSCBench-KITTI-360126
dataset [5]. Since VoxFormer [6] does not provide code127
for SSCBench-KITTI-360, we only compare our method to128
Symphonize [4] on this dataset.129

D. Limitation130

Although our work has achieved excellent results on two131
datasets, it still has several limitations. First, our method132
relies on appropriate satellite map inputs, and previous ab-133
lation experiments have shown that our approach is quite134
sensitive to localization noise. Therefore, if there is a sig-135
nificant deviation between the input satellite imagery and136
the actual location, the performance of our method will be137
greatly reduced. Additionally, we have not introduced many138
innovations targeting dynamic and small objects; thus, for139
these categories, our method does not show significant im-140
provements compared to other approaches. Finally, adding141
a satellite branch brings additional computational resource,142
making our method less lightweight. We will address these143
issues in future work. Despite the above problems, we still144
believe that our method has made a valuable contribution145
and provided inspiration to the field of SSC task.146
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Figure 3. Additional Visualization on SemanticKITTI [1].
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Figure 4. Additional Visualization on SemanticKITTI [1].
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Figure 5. Additional Visualization on SSCBench-KITTI-360 [5].
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