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SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion

Supplementary Material
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Figure 1. Channel and Spatial Attention.Our channel attention
mechanism (top part) utilizes average and maximum pooling op-
erations, followed by shared MLP layers. Similarly, our spatial
attention mechanism (bottom part) employs the same pooling op-
erations, paired with 7 x 7 convolution layer.

A. Extended Technical Details
A.l. Convolutional Enhancement Details

In the convolutional enhancement module, we utilize 3D
and 2D U-Nets to improve prediction performance. For the
ground branch, we employ a 3D U-Net with two encoder
and decoder layers. In the satellite branch, we use a 2D
U-Net with three encoder and decoder layers.

A.2. Fusion Module Details

Our channel and spatial attention mechanisms used in the
dual-path weight generator are inspired by CBAM [8], with
the detailed architecture illustrated in Figure 1.

Channel Attention. The channel attention operation is
shown in the upper part of Figure 1. First, we compress
the concatenated voxel features along the spatial dimen-
sions using both average and maximum pooling operations,
generating F%/? and F7ez e RDXIXIXL These
compressed features are then passed through shared MLP
layers consisting of two MLP layers with a ReLU activa-
tion function, producing two channel attention maps W&"9
and W@ ¢ RPX1IX1X1 Finally, we sum the two maps to
compute the channel attention weight W .. Mathematically,
the whole operation can be expressed as:

W. = MLP(AvgPool(F'>")) + MLP(MaxPool(F'2")) (1)

where MLP is the shared MLP layers, AvgPool and
MaxPool is average and maximum pooling operation, re-
spectively.

Spatial Attention. The spatial attention operation is shown
in the lower part of Figure 1. Similar to the channel atten-
tion operation, we compress the concatenated BEV features

along the channel axis to obtain Fy ¢, , and F%%, , €
RIXH*W ~These features are concatenated and fed into a
convolutional layer with a 7 x 7 kernel, producing the spatial
attention weight W. The equation of the spatial attention

operation is shown as follows:

W, = conv’ " (AvgPool(F'2 ") @ MaxPool(F'7*")))
2

77 is convo-

where (C) is concatenate operation, while conv
lution operation with the 7 x 7 kernel.

Additionally, in our probability network, the spatial at-
tention operation follows the same steps. However, since
the input features are voxel features, the convolutional layer
is replaced with a 3D dilated convolution. Moreover, the
MLP used in the weight generator is a 2-layer MLP with
ReLU activation. In the probability net, we utilize a basic
ResNet block [3] combined with a 2-layer MLP.

A.3. Loss Function Detail

Scene Class Affinity Loss. Our scene class affinity loss is
the same as previous work [2, 6]. The loss computes the
class-wise derivable precision, recall, and specificity. The
mathematical equation is:

Pc(ﬁvp) = log Z:zﬁzl,:c[;)’tzc]
sto = B

where the p; . is the predicted probability for the class c,
while p; is the ground truth. P, and R, denote the preci-
sion and recall, respectively, evaluating the performance of
voxels belonging to class c. And S. is specificity, which
measures the performance of voxels not belonging to class
c. We get the scene class affinity loss L4, by summing the
P., R., and S, together as follows:

C
1
Acscal (ﬁvp) = _5 Z (Pc<ﬁap) + Rc(ﬁvp) + Sc(ﬁap)) .
c=1
“)

In our paper, we use the semantic label and binary geometry
label to obtain semantics affinity loss £33 and geometry
affinity loss L5 , respectively, and add them together.

Cross-Entropy Loss. As mentioned in Section 3.5 of the
paper, we use weighted cross-entropy loss to compute three

losses: Lce, Leo, and Lpe,. Our cross-entropy equation is
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(a) BEV loss curve.

(b) Scene class affinity loss curve.
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Figure 2. Loss curve with/without satellite correction strategy. The orange curves are the loss curves of SGFormer without the satellite
correction, while blue curves are the loss curves with satellite correction.

Channel Attention  Spatial Attention Probability Net ‘ IoU mloU Global Detail
X X X 4390 15.59 2843 8.10
v X X 4485 1625 29.19 871
X v X 4488 16.12 2997  8.05
X X v 4495 1645 29.06 9.12
v v v 45.01 16.68 29.31 9.29

Table 1. Ablation on components of fusion module.

Ground image backbone ‘ IoU mloU
ResNet-50 4430 16.14
EfficientNet-B7 45.01 16.68

Table 2. Ablation on different backbones.

expressed as follows:

exp (yc)
loss = welog — 57— 5
Z i exp (4:)

where ¢ is input, y is the ground truth, and N denotes the
class number. w, is the class weight that is inverse of class
frequency.

B. Additional Ablation Study

In this section, we present the additional ablation analy-
sis, which consists of three parts: adaptive fusion module,
Backbone, and learning efficiency.

B.1. Ablation on Adaptive Fusion Module

Table 1 presents the ablation on detailed components of
our adaptive fusion module. Overall, the integration of
any component within our fusion module significantly en-
hances the prediction accuracy of SGFormer. This im-
provement arises because the two branches focus on dif-
ferent aspects of the task; thus, introducing an adaptive

weighting mechanism naturally brings substantial perfor-
mance improvement. Specifically, incorporating the chan-
nel attention network simultaneously improves the accu-
racy for both scene layout and small objects: the mloU for
the ”global” category increases from 28.43 to 29.19, while
the mloU for the detail” category improves from 8.10 to
8.71. This enhancement is attributed to the module’s ca-
pability to perform trade-offs at the object level, making
the fusion strategy more inclined to rely on the satellite
branch’s outputs for objects in the “global” category and
on the ground branch for the “detail” category.

The addition of the spatial attention network further
increases the accuracy of our method in capturing the scene
layout, increasing the mIoU from 28.43 to 29.97. This im-
provement is due to the spatial attention network’s ability
to balance the weights of the sensors across different re-
gions based on each sensor’s detection range, enabling our
method to generate a more comprehensive scene layout.

Finally, the incorporation of the probability net en-
hances the prediction accuracy across all categories. The
probability net adaptively identifies the more important vox-
els, thereby improving the overall learning efficiency of the
model.

B.2. Ablation on Image Backbone

Table 2 shows the comparison between different ground im-
age backbones, including EfficientNet-B7 [7] (used in SG-
Former) and ResNet-50 [3] (used in baseline methods such
as VoxFormer and Symphonize). The results highlight two
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key observations. First, EfficientNet-B7 achieves higher
performance due to its more efficient architecture. Sec-
ond, even when using ResNet-50, SGFormer still outper-
forms baseline methods, demonstrating the superiority of
our dual-branch framework.

B.3. Ablation on Learning Efficiency

Figure 2 shows the learning curves of our method with and
without satellite correction strategy. We report all the losses
we used in the training, including BEV loss, scene class
affinity loss, and cross-entropy loss (summed with coarse
loss). According to the figure, adding satellite correction
operations can improve learning efficiency. This finding
confirms what we mentioned about adding satellite correc-
tion to warm up learning.

C. Additional Visualization

Figure 3 and Figure 4 presents the more visualiza-
tion results from SemanticKITTI [1]. Moreover, we
include qualitative results on the SSCBench-KITTI-360
dataset [5]. Since VoxFormer [6] does not provide code
for SSCBench-KITTI-360, we only compare our method to
Symphonize [4] on this dataset.

D. Limitation

Although our work has achieved excellent results on two
datasets, it still has several limitations. First, our method
relies on appropriate satellite map inputs, and previous ab-
lation experiments have shown that our approach is quite
sensitive to localization noise. Therefore, if there is a sig-
nificant deviation between the input satellite imagery and
the actual location, the performance of our method will be
greatly reduced. Additionally, we have not introduced many
innovations targeting dynamic and small objects; thus, for
these categories, our method does not show significant im-
provements compared to other approaches. Finally, adding
a satellite branch brings additional computational resource,
making our method less lightweight. We will address these
issues in future work. Despite the above problems, we still
believe that our method has made a valuable contribution
and provided inspiration to the field of SSC task.
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Figure 3. Additional Visualization on SemanticKITTI [1].
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Figure 4. Additional Visualization on SemanticKITTI [1].
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Figure 5. Additional Visualization on SSCBench-KITTI-360 [5].



	. Extended Technical Details
	. Convolutional Enhancement Details
	. Fusion Module Details
	. Loss Function Detail

	. Additional Ablation Study
	. Ablation on Adaptive Fusion Module
	. Ablation on Image Backbone
	. Ablation on Learning Efficiency

	. Additional Visualization
	. Limitation

