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A. Theoretical analysis

A.1. Generalization error bound analysis

Suppose there is a hypothesis function f : X → Y out-

putting a target y ∈ Y , given an input data x ∈ X . Sample

set S consists of n instances (x1, y1), . . . , (xn, yn). With

this sample set, we want to use a DNN model with a weight

matrix W to approximate f(x).
Given a non-negative real-valued loss function ℓ, we

aim to establish a theoretical generalization error bound be-

tween the expected loss EP [ℓ(Wx, y)] and the empirical

loss EPn
[ℓ(Wx, y)], which is crucial for understanding the

generalization ability of the model and providing theoretical

support for model optimization. In particular, the empirical

loss of given training samples distribution Pn is defined as

EPn
[ℓ(Wx, y)] =

1

n

∑

(xi,yi)∈S

ℓ(Wxi, yi), (1)

which refers to the average loss observed for each sample

in the training data.

On the other hand, the expected loss is the expectation of

loss under the population data distribution P , defined as

EP [ℓ(Wx, y)] = E(x,y)∼P [ℓ(Wx, y)]. (2)

Then, the difference between the empirical loss and the ex-

pected loss is called a generalization error:

GE(ℓ) = ∥EP [ℓ(Wx, y)]− EPn
[ℓ(Wx, y)]∥. (3)

The following assumptions and conclusions are made in

[12] for generalization error.

A.1.1. Key assumptions

We truncate the loss function during our analysis to control

potential large errors. By choosing a truncation value to be

B > 0, the truncated loss function is defined as

ℓ̃(Wx, y) = min(B, ℓ(Wx, y)), (4)

which aims to minimize the impact of extreme cases (like

outliers) on the loss function, thereby enhancing the stabil-

ity of the generalization error bound.

Assume that the loss function ℓ is convex and satisfies

the following assumption regarding its second-order deriva-

tives.

∥∇Tr(Hℓ(·, y))∥2 ≤ τ Tr(Hℓ(·, y)), (5)

where Hℓ(·, y) is the second derivative of the loss function

ℓ (i.e., the Hessian matrix), and τ > 0 is a control constant.

The assumption suggests that the Hessian matrix is well-

controlled within the function space, preventing excessive

fluctuations. Such control is crucial as it limits the curva-

ture of the loss function, enabling better management of the

generalization error.

A.1.2. Taylor expansion

To analyze the behavior of the loss function, we expand

it around the point Wx0, which can be chosen as the ori-

gin. The loss function ℓ(Wx, y) can be approximated by

the Taylor expansion

ℓ(Wx, y) ≈ ∇ℓ(0, y) ·Wx+
1

2
Wx⊤Hℓ(0, y) ·Wx, (6)

where ∇ℓ(0, y) represents the first derivative of the loss

function ℓ with respect to Wx0, that is, the Jacobian ma-

trix; Hℓ(0, y) represents the second derivative of the loss

function ℓ, i.e., the Hessian matrix.

A.1.3. Inequalities and concentration bounds

We use concentration inequalities to bound the deviation

between empirical loss and expected loss. Here, we apply

Bernstein’s Inequality for its tighter bounds compared to

other concentration inequalities. Specifically, we define a

sequence of random variables Zi = ℓ(Wxi, yi) and com-

pute their variance

Var(Zi) = E

[
(Zi − E[Zi])

2
]
. (7)

Then Bernstein’s inequality gives us the following bound

P

(∣∣∣∣∣
1

n

n∑

i=1

Zi − E[Z]

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− nϵ2

2σ2 + 2
3Mϵ

)
,

(8)

where σ2 = Var(Zi) is the variance and M is a constant

controlling the range of Zi. This inequality demonstrates

that as the sample size n increases, the probability of a large

deviation between empirical and expected losses decreases

exponentially.

A.1.4. Definitions

To quantify the bounds on the generalization error, we in-

troduce two important quantities.

• Norm of the Jacobian matrix:

µ(W ) = EPn

[
∥∇ℓ(Wx, y)∥2

]
, (9)

which measures the overall magnitude of the first-order

derivative of the loss function, reflecting the sensitivity of

the loss function to changes in the input Wx.



• Trace of the Hessian matrix:

ν(W ) = EPn

[
Tr(Hℓ(Wx, y))

]
, (10)

which measures the second-order derivative of the loss

function, describing the local curvature of the loss func-

tion in the input space.

A.1.5. Generalization error bounds

Combining the previous process, we decompose the error

bound into several key error terms. Through calculation,

we obtain:

EP [ℓ(Wx, y)] ≤ EPn
[ℓ(Wx, y)]+O

(
σ√
n
+

M

n

)
. (11)

By expanding σ and M , we obtain

σ ∼ A
√

Bν(W )θ,

and

M ∼ B log3(nc).

Reviewing the generalization error results from [12], we

have:

Theorem 1 (Theorem 4.1 in [12]). With probability 1 − δ

over the training examples, for all weight matrices W sat-

isfying the norm bound ∥WT ∥2,1 ≤ A, the following holds

EP

[
ℓ(Wx, y)

]
− 1.01EPn

[
ℓ(Wx, y)

]
≤ (Aµ(W ))

2

3 (θB)
1

3

n
1

3

+
A
√
Bν(W )θ√

n
+

BA2θ

n
(
log2

(
BA2θ
ν(W )n

)
+ 1
) + ζ,

(12)

where µ(W ), ν(W ) measure the Jacobian and Hessian

of the loss, respectively. Additionally, we define θ =

log3(nc)maxi ∥xi∥22 and ζ = B(log(1/δ)+log logn)
n is a low-

order term.

A.2. Regularizing of Hessian trace is necessary

A.2.1. Impact of Hessian trace

According to Theorem 1, the model achieves strong gener-

alization when both the Jacobian norm and the Hessian trace

are small. While gradient descent minimizes the loss func-

tion to reach a zero-gradient point, it primarily reduces the

Jacobian norm by addressing first-order derivatives. How-

ever, it does not inherently constrain the Hessian trace,

which involves second-order derivatives. Thus, imposing

additional constraints on the Hessian trace is essential when

updating parameters using gradient descent. Inspired by

this, Liu et al. [7] incorporated the Hessian trace as an ad-

ditional penalty term in the loss function

ℓall(f(x), y) ≈ ℓ(f(x), y) + λ · Tr(Hℓ,W ), (13)

where λ controls the contribution of Hessian regularization.

Furthermore, they discussed the impact of penalizing the

Hessian trace on the flatness of the minima and the linear

stability.

A.2.2. Flat minima vs. sharp minima

During deep learning model training, parameters may con-

verge to different minima, characterized by the distribution

of eigenvalues of the Hessian matrix.

(1) Flat Minima: A Hessian matrix with smaller eigenval-

ues (λi) implies a smaller trace Tr(H) =
∑d

i=1 λi, indi-

cating that the loss surface is relatively flat at this loca-

tion, corresponding to a stronger generalization ability.

(2) Sharp Minima: A large Hessian eigenvalue indicates a

high trace Tr(H), reflecting steep curvature of the loss

surface. High curvature at a local minimum often in-

dicates that the model is highly sensitive to small input

perturbations, increasing the risk of overfitting.

To intuitively understand the relationship between the

Hessian and the minimum properties, we examine the

second-order approximation of the loss function ℓ(Wx)
near a local minimum point Wx0:

ℓ(Wx) ≈ ℓ(Wx0)+
1

2
(Wx−Wx0)

⊤H(Wx0)(Wx−Wx0),

(14)

where H(Wx0) represents the Hessian matrix of the loss

function at the point Wx0. If the trace of H(Wx0) is small,

it indicates that the loss function changes slowly around

Wx0, and the minimum is relatively flat. In contrast, it sug-

gests that the loss function changes rapidly near this point,

and the minimum is relatively sharp.

A.2.3. Linear stability analysis

Further discussion explores neural network optimization

through linear stability analysis and stochastic gradient de-

scent (SGD). By treating parameter updates as a dynamic

system, the stability of equilibrium points is key to under-

standing convergence. The Hessian matrix is crucial for de-

termining stability; penalizing its trace reduces the eigen-

values, which helps the optimizer to escape local minima

and avoid easy-to-converge equilibrium points. It aligns

with Lyapunov stability theory in [8], highlighting the

need to destabilize certain equilibrium points for better op-

timization outcomes.

A.2.4. Implicit regularization on Hessian trace

Although [7] introduced the estimated Hessian trace as

an additional penalty in the loss function, its computation

via Hutchinson and Dropout methods has notable limita-

tions: it significantly raises computational complexity, in-

troduces potential estimation errors, and may overly smooth

the model, potentially hindering its capacity to capture com-

plex data patterns.



In contrast, our approach employs a diffusion process

to introduce controlled randomness directly for feature en-

hancement, thereby improving the model’s segmentation

accuracy on hard samples. Rather than relying on com-

putationally heavy Hessian trace approximations, we use a

diffusion process that implicitly regularizes the model. By

taking expectations and applying a Taylor expansion, we

derive our expected loss function as

E[ℓ(f(x+ g(ϵ)), y)] ≈ ℓ(f(x), y) +
1

2
Tr(HΣg), (15)

where Σg is the covariance matrix of g(ϵ). Building on

the previous theoretical analysis, it demonstrates how ran-

domness augmentation implicitly regularizes the model.

Here, ℓ(f(x), y) represents the original loss function and
1
2Tr(HΣg) is the regularization term. The trace of the Hes-

sian matrix, Tr(H), indicates the curvature of the loss sur-

face. Larger curvature often results in sharp minima, which

can harm generalization. Penalizing Tr(H) promotes con-

vergence to flatter minima, enhancing generalization. Addi-

tionally, penalizing the Hessian trace helps the model avoid

local stable points, reducing overfitting to specific hard sam-

ples. Through the integration of randomness via a diffusion

process, our method achieves a more effective balance in

the model’s ability to generalize and handle complex data

patterns while maintaining computational efficiency.

B. Experimental results

We expand on the experimental results by detailing the

datasets and evaluation metrics and presenting additional

experimental findings.

B.1. Description of datasets

To evaluate the performance of our L2S, we carried out ex-

periments across seven different medical image segmenta-

tion datasets, as described below.

B.1.1. Carotid artery segmentation

We used the carotid artery MRI dataset from the CarOtid

Vessel Wall Segmentation And Atherosclerosis Diagnosis

Challenge (COSMOS 2022) [13]. This dataset comprises

75 MR scans, with 45 scans for training (1,875 axial slices),

5 scans for validation (212 axial slices) and 25 scans for

testing (1,241 axial slices). The annotations include both

the Lumen and Outer Wall regions. Our focus is on seg-

menting the vessel wall, defined as the area obtained by

subtracting the Lumen from the Outer Wall label.

B.1.2. Skin lesion segmentation

We used the ISIC2018 segmentation dataset [10], which

consists of 2,594 annotated dermoscopic images aimed at

accurately delineating skin lesion boundaries.

B.1.3. Polyp segmentation

We used the Kvasir-SEG dataset [5], which contains 1,000

polyp images, each paired with a corresponding segmen-

tation mask. These images are derived from various proce-

dures, including colonoscopies, encompassing a wide range

of polyp sizes, shapes, and appearances.

B.1.4. Breast cancer segmentation

We used the BUSI dataset [1] for breast cancer segmen-

tation. To make the model focus on segmentation on dif-

ficult samples, we excluded images labeled ‘normal’ and

used 1,312 images (891 benign and 421 malignant) from

this dataset.

B.1.5. Cardiac organ segmentation

We used the ACDC dataset [2] for cardiac organ segmen-

tation. It contains 100 cardiac MRI scans having three

sub-organs, namely the right ventricle (RV), myocardium

(Myo), and left ventricle (LV). Following TransUNet [3],

we used 70 cases (1,930 axial slices) for training, 10 for

validation, and 20 for testing.

B.1.6. Abdomen organ segmentation

We used the BTCV multi-organ dataset [4] for abdomen or-

gan segmentation. This dataset includes 30 abdominal CT

scans with a total of 3,521 axial contrast-enhanced slices,

averaging 127 slices per scan, each with a resolution of 512

× 512 pixels.

B.1.7. Brain tumor segmentation

We used the BraTS2020 [9] for brain tumor segmentation.

This dataset includes 369 brain MRI scans with a total of

17,391 axial contrast-enhanced slices, each with a resolu-

tion of 240 × 240 pixels.

In our implementation, we used an 80:10:10 train-

validation-test split for the ISIC2018, Kvasir-SEG, BUSI,

BTCV and BraTS2020 datasets. For the other datasets, we

adhered to the default train-validation-test splits.

B.2. Evaluation metrics

We use the DICE score to evaluate the performance across

all segmentation datasets and include IoU as an additional

metric for four binary segmentation datasets. The DICE

score DSC(Y, P ) and IoU IoU(Y, P ) are calculated as fol-

lows

DSC(Y, P ) =
2× |Y ∩ P |
|Y |+ |P | × 100, (16)

and

IoU(Y, P ) =
|Y ∩ P |
|Y ∪ P | × 100, (17)

where Y and P are the ground truth and predicted segmen-

tation map, respectively.



Dataset TS LHS IHS Overlap Jaccard Index (%) Precision (%)

COSMOS 2022 1241 185 204 185 90.69 100.00

ISIC 2018 519 118 130 109 78.42 92.37

BUSI 262 80 101 75 70.75 93.75

Kvasir-SEG 200 33 39 28 63.64 84.85

Table 1. Evaluation of hard sample identification across different datasets, where TS denotes total samples during testing, LHS denotes the

labeled hard samples, and IHS denotes the hard samples identified by our model with a Dice score below 0.7. Besides, overlap represents

the number of intersections between labeled hard samples and identifiable hard samples.

Method COSMOS2022 ISIC2018 Kvasir-SEG BUSI p-value

UNet 82.44 ± 0.8 87.14 ± 1.8 85.63 ± 1.4 76.41 ± 1.2 0.007

PolypPVT 82.33 ± 1.3 89.84 ± 2.4 91.44 ± 0.9 81.05 ± 1.8 0.035

nnUNet 84.12 ± 0.6 88.91 ± 1.6 90.55 ± 1.1 80.94 ± 1.2 0.037

MedT 82.81 ± 1.7 88.84 ± 2.5 89.68 ± 1.4 80.44 ± 1.8 0.001

TransUNet 82.92 ± 1.3 89.44 ± 2.3 91.04 ± 1.8 80.32 ± 1.4 0.001

TransFuses 83.17 ± 1.6 89.96 ± 3.1 91.27 ± 2.2 81.50 ± 2.3 0.010

SwinUNet 83.63 ± 1.1 89.56 ± 2.0 90.22 ± 1.8 79.76 ± 1.9 0.012

MedSegDiffV2 82.89 ± 3.2 89.78 ± 3.3 91.06 ± 2.8 80.53 ± 2.4 0.001

Mask2former 82.76 ± 1.3 89.59 ± 2.1 90.86 ± 2.0 80.19 ± 1.4 0.001

L2S 84.16 ± 1.8 90.97 ± 2.9 91.87 ± 2.3 81.82 ± 2.0 -

Table 2. The Wilcoxon Signed-Rank Test on the Binary Segmentation Task Dataset Based on DSC.

Method
ISIC 2018 Kvasir-SEG

DSC DSC† DSC DSC†

SAM 89.58 ± 2.5 59.41 ± 3.4 88.26 ± 2.0 58.92 ± 3.8

SAM2 88.45 ± 2.2 57.93 ± 2.8 86.73 ± 1.6 58.18 ± 4.1

L2S 90.97 ± 2.9 63.90 ± 4.7 91.87 ± 2.3 64.34 ± 3.9

Table 3. Comparison with SAM-based methods. DSC† is com-

puted on the hard samples with dice score below 0.7.

B.3. Effectiveness of hard sample identification

We evaluated whether the predicted hard samples genuinely

reflect the characteristics of dataset-specific hard samples.

While the dataset lacks a precise definition of hard sam-

ples, it is widely accepted that samples with lesion regions

that are challenging to segment accurately qualify as hard

samples. Accordingly, we utilized the lesion labels pro-

vided in the segmentation dataset to define hard samples

for this analysis. Specifically, taking the four datasets from

the first experiment in the main text as examples, the hard

samples are defined as follows: bifurcations and atheroscle-

rotic regions in COSMOS 2022; Melanoma, Basal Cell Car-

cinoma, Dermatofibroma, and hair artifacts in ISIC 2018;

malignant lesions in BUSI; and polyps and flat lesions in

Kvasir-SEG. These hard samples all exhibit significant class

imbalance.

Table 1 shows the comparison between the labeled hard

samples (LHS) and identified hard samples (IHS) selected

by our hard sample identification module. It can be ob-

served that the majority of the predicted hard samples over-

lap with the labeled hard samples, indicating that our model

effectively identifies hard samples that exhibit dataset-

specific characteristics. Even for datasets like Kvasir-SEG,

which have a relatively low Jaccard Index (overlap ratio),

our method maintains a consistently high precision across

all datasets. It indicates that despite variations in overlap

metrics, the majority of true hard samples are still included

among the identified hard samples.

As observed in Table 1, the number of hard samples iden-

tified by our model exceeds the number of labeled hard sam-

ples in the dataset. This is because hard samples are not

limited to lesion-related instances. To further analyze this,

we visualized other samples identified as hard samples, as

shown in Figure 1. The results demonstrate that the iden-

tified hard samples encompass the types described in the

main text, including structural changes, pathological varia-

tions, and artifacts and noise. It highlights the robust capa-

bility of our hard sample identification module in uncover-

ing various forms of hard samples within the dataset.

B.4. More results on binary segmentation

We have supplemented the corresponding standard devi-

ations and statistical significance of Table 1 in the main

text within Table 2. Our model demonstrates superior per-

formance in five-fold cross-validation, with significantly

higher DSC scores than other models, which is statistically

significant. We further conducted a comparative analysis of

our model against the fine-tuned SAM [6] and SAM2 [11]
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Figure 1. Instances identified as hard samples by our model in different datasets.

label UNet nnUNet TransUNet

TransFuse SwinUNet Mask2former L2S(UNet) L2S(Mask2former)

Image

Figure 2. Qualitative results of cardiac organ segmentation on

ACDC dataset.

on the ISIC2018 and Kvasir-SEG datasets. As shown in

Table 3, despite fine-tuning, both SAM models underper-

form compared to our approach. SAM-based methods vali-

date the scaling laws in image segmentation, but human-like

data efficiency—learning from minimal samples—remains

unachieved. We propose an architecture with improved data

efficiency and elucidate its theoretical foundations.

B.5. More results on multi­phase segmentation

We provide qualitative results on the ACDC, BTCV and

BraTS2020 datasets for multi-phase segmentation using

various methods, including our L2S. Figure 2 shows

that the predicted segmentation results of our UNet-based

and Mask2Former-based L2S models have a high over-

lap with the Ground Truth mask, especially in the My-

ocardium (Myo) region, while existing state-of-the-art

methods show segmentation errors. Among these, our L2S

(Mask2Former) achieves the best segmentation results. Fig-

ure 3 presents the qualitative results of different segmen-

tation methods on the BTCV multi-organ dataset, where

most methods face challenges in segmenting the Adrenal

gland (cyan-blue). The comparison results show that our

L2S method performs excellently in segmenting this organ

(see red rectangular box), while also achieving the best seg-

mentation results for other organs. Furthermore, we val-

idated the effectiveness of our model on the BraTS2020

brain tumor segmentation dataset. As shown in Figure 4,

compared to the competing algorithms, our L2S method

demonstrates outstanding performance in the enhancing tu-

mor (red) region. Table 4 presents the accuracy metrics for

the BraTS2020 brain tumor segmentation task, highlighting

its superiority in challenging sample segmentation.

Methods WT TC ET ET* Avg.

UNet 87.74 83.27 75.23 35.38 82.08

nnUNet 90.38 86.63 78.84 46.66 85.28

TransUNet 88.45 84.97 76.45 38.77 83.29

SwinUNet 88.71 85.18 76.52 40.21 83.47

TransFuses 90.11 86.44 78.62 45.04 85.06

TransBTS 90.62 86.86 79.61 47.12 85.70

MedSegDiffV2 89.23 85.94 77.28 42.23 84.15

Mask2former 88.84 85.26 77.15 39.47 83.75

L2S 91.13 87.42 80.29 55.15 86.28

Table 4. Dice score for brain tumor segmentation on the

BraTS2020 dataset. ET* denotes the mean value of enhancing

tumor samples with dice score below 0.7.

B.6. Visual comparison on ablation study

Finally, we performed a detailed visualization of the results

from a comprehensive ablation study. Figure 5 illustrates

representative visual outcomes, accompanied by standard

deviations, to elucidate the impact of distinct model com-

ponents. The first two examples (rows 1 and 2) demon-

strate that the integration of CLS and DDPM significantly

enhances the model’s segmentation accuracy. However, for



label UNet nnUNet TransUNet

TransFuse SwinUNet Mask2former L2S

Spleen Right kidney Left kidney Liver Aorta StomachS&P VeinsIVC Pancreas Adrenal gland

Figure 3. Qualitative results of multi-organ segmentation on BTCV dataset. The red rectangular box highlights incorrectly segmented

organs by SOTA methods.

UNetlabel nnUNet TransUNet SwinUNet

TransFuses TransBTS MedSegDiffV2 Mask2former L2S

Figure 4. Qualitative results of brain tumor segmentation on

BraTS2020 dataset.

images with complex edge structures (row 3), a notable dis-

parity remains between the model’s segmentation predic-

tions and the ground truth labels, highlighting a critical area

for future research and refinement.
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