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Supplementary Material

A. Theoretical analysis

A.l. Generalization error bound analysis

Suppose there is a hypothesis function f : X — ) out-
putting a target y € )/, given an input data x € X'. Sample
set S consists of n instances (21,y1),- -, (Tn, Yn). With
this sample set, we want to use a DNN model with a weight
matrix W to approximate f(x).

Given a non-negative real-valued loss function ¢, we
aim to establish a theoretical generalization error bound be-
tween the expected loss Ep[¢(Wx,y)] and the empirical
loss Ep, [¢(Wx,y)], which is crucial for understanding the
generalization ability of the model and providing theoretical
support for model optimization. In particular, the empirical
loss of given training samples distribution P, is defined as

1
Ep [((Waz,y))=— > (Wziys), (1)
(z3,y:)€S

which refers to the average loss observed for each sample
in the training data.

On the other hand, the expected loss is the expectation of
loss under the population data distribution P, defined as

Then, the difference between the empirical loss and the ex-
pected loss is called a generalization error:

GE(() = |[Ep[((Waz,y)] - Ep, [((Waz,y)]ll.  3)

The following assumptions and conclusions are made in
[12] for generalization error.

A.1.1. Key assumptions

We truncate the loss function during our analysis to control
potential large errors. By choosing a truncation value to be
B > 0, the truncated loss function is defined as

((Wx,y) = min(B, (W, y)), 4

which aims to minimize the impact of extreme cases (like
outliers) on the loss function, thereby enhancing the stabil-
ity of the generalization error bound.

Assume that the loss function ¢ is convex and satisfies
the following assumption regarding its second-order deriva-
tives.

||VTI(H€('ay))||2 < TTI‘(H@(',y)), )

where Hy(-,y) is the second derivative of the loss function
/ (i.e., the Hessian matrix), and 7 > 0 is a control constant.

The assumption suggests that the Hessian matrix is well-
controlled within the function space, preventing excessive
fluctuations. Such control is crucial as it limits the curva-
ture of the loss function, enabling better management of the
generalization error.

A.1.2. Taylor expansion

To analyze the behavior of the loss function, we expand
it around the point Wz, which can be chosen as the ori-
gin. The loss function £(Wz,y) can be approximated by
the Taylor expansion

1
((Wz,y) ~ V0,y) Wz + EWxTHg(O,y) Wz, (6)

where V¢(0,y) represents the first derivative of the loss
function ¢ with respect to Wz, that is, the Jacobian ma-
trix; Hy(0,y) represents the second derivative of the loss
function /, i.e., the Hessian matrix.

A.1.3. Inequalities and concentration bounds

We use concentration inequalities to bound the deviation
between empirical loss and expected loss. Here, we apply
Bernstein’s Inequality for its tighter bounds compared to
other concentration inequalities. Specifically, we define a
sequence of random variables Z; = ¢(Wx;,y;) and com-
pute their variance

Var(Z;) = E[(Zi — E[Zi])ﬂ. %)

Then Bernstein’s inequality gives us the following bound

1 — ne?
Pl |- Z; — E[Z]| > <2 —_—
(nlz_; i~ ElZ] _€> - exp( 202—|—§M'e>7
(®)

where 02 = Var(Z;) is the variance and M is a constant
controlling the range of Z;. This inequality demonstrates
that as the sample size n increases, the probability of a large
deviation between empirical and expected losses decreases
exponentially.

A.1.4. Definitions

To quantify the bounds on the generalization error, we in-
troduce two important quantities.
* Norm of the Jacobian matrix:

p(W) =Ep, [[VEWz,y)|l2], ©

which measures the overall magnitude of the first-order
derivative of the loss function, reflecting the sensitivity of
the loss function to changes in the input W,.



¢ Trace of the Hessian matrix:

v(W) =Ep, [Te(Ho(W,y))], (10)

which measures the second-order derivative of the loss
function, describing the local curvature of the loss func-
tion in the input space.

A.1.5. Generalization error bounds

Combining the previous process, we decompose the error
bound into several key error terms. Through calculation,
we obtain:

g

Erli0Ve,y)] < Br, [0V, )}+0 (-

M

+ > . (A1)
n

By expanding ¢ and M, we obtain

o~ A\/Bv(W)0,
and
M ~ Blog®(nc).
Reviewing the generalization error results from [12], we

have:

Theorem 1 (Theorem 4.1 in [12]). With probability 1 — §
over the training examples, for all weight matrices W sat-
isfying the norm bound |W7 ||2.1 < A, the following holds

Wl
Wl

Ep [Z(Wx,y)] — 1.01Ep, [Z(Wx,y)] < (AM(W)Z (0B)
A/Bo(W)o BA% e
Vi n(log? (BA2)+1)

(12)

where pu(W),v(W) measure the Jacobian and Hessian
of the loss, respectively. Additionally, we define 0 =
log® (ne) max; ||2;||3 and ¢ = B(log(1/9)+log logn)

n
order term.

is a low-

A.2. Regularizing of Hessian trace is necessary

A.2.1. Impact of Hessian trace

According to Theorem 1, the model achieves strong gener-
alization when both the Jacobian norm and the Hessian trace
are small. While gradient descent minimizes the loss func-
tion to reach a zero-gradient point, it primarily reduces the
Jacobian norm by addressing first-order derivatives. How-
ever, it does not inherently constrain the Hessian trace,
which involves second-order derivatives. Thus, imposing
additional constraints on the Hessian trace is essential when
updating parameters using gradient descent. Inspired by
this, Liu et al. [7] incorporated the Hessian trace as an ad-
ditional penalty term in the loss function

ga”(f(l‘),y) %ﬂ(f(x),y) —‘v‘)\'TI'(Hz’W), (13)

where A controls the contribution of Hessian regularization.
Furthermore, they discussed the impact of penalizing the
Hessian trace on the flatness of the minima and the linear
stability.

A.2.2. Flat minima vs. sharp minima

During deep learning model training, parameters may con-
verge to different minima, characterized by the distribution
of eigenvalues of the Hessian matrix.

(1) Flat Minima: A Hessian matrix with smaller eigenval-
ues ()\;) implies a smaller trace Tr(H) = Z?Zl i, indi-
cating that the loss surface is relatively flat at this loca-
tion, corresponding to a stronger generalization ability.

(2) Sharp Minima: A large Hessian eigenvalue indicates a
high trace Tr(H), reflecting steep curvature of the loss
surface. High curvature at a local minimum often in-
dicates that the model is highly sensitive to small input
perturbations, increasing the risk of overfitting.

To intuitively understand the relationship between the
Hessian and the minimum properties, we examine the
second-order approximation of the loss function ¢(Wz)
near a local minimum point Wz:

(W)~ E(on)—&—%(Wx—Wmo)TH(on)(W:U—on),

(14)
where H(Wxg) represents the Hessian matrix of the loss
function at the point Wz. If the trace of H (W x) is small,
it indicates that the loss function changes slowly around
Wz, and the minimum is relatively flat. In contrast, it sug-
gests that the loss function changes rapidly near this point,
and the minimum is relatively sharp.

A.2.3. Linear stability analysis

Further discussion explores neural network optimization
through linear stability analysis and stochastic gradient de-
scent (SGD). By treating parameter updates as a dynamic
system, the stability of equilibrium points is key to under-
standing convergence. The Hessian matrix is crucial for de-
termining stability; penalizing its trace reduces the eigen-
values, which helps the optimizer to escape local minima
and avoid easy-to-converge equilibrium points. It aligns
with Lyapunov stability theory in [8], highlighting the
need to destabilize certain equilibrium points for better op-
timization outcomes.

A.2.4. Implicit regularization on Hessian trace

Although [7] introduced the estimated Hessian trace as
an additional penalty in the loss function, its computation
via Hutchinson and Dropout methods has notable limita-
tions: it significantly raises computational complexity, in-
troduces potential estimation errors, and may overly smooth
the model, potentially hindering its capacity to capture com-
plex data patterns.



In contrast, our approach employs a diffusion process
to introduce controlled randomness directly for feature en-
hancement, thereby improving the model’s segmentation
accuracy on hard samples. Rather than relying on com-
putationally heavy Hessian trace approximations, we use a
diffusion process that implicitly regularizes the model. By
taking expectations and applying a Taylor expansion, we
derive our expected loss function as

B/ (@ +9(0), )] = (S (@),9) + 3 THHS,), (9

where X, is the covariance matrix of g(e). Building on
the previous theoretical analysis, it demonstrates how ran-
domness augmentation implicitly regularizes the model.
Here, ¢(f(x),y) represents the original loss function and
1Tr(HY,) is the regularization term. The trace of the Hes-
sian matrix, Tr(H), indicates the curvature of the loss sur-
face. Larger curvature often results in sharp minima, which
can harm generalization. Penalizing Tr(H) promotes con-
vergence to flatter minima, enhancing generalization. Addi-
tionally, penalizing the Hessian trace helps the model avoid
local stable points, reducing overfitting to specific hard sam-
ples. Through the integration of randomness via a diffusion
process, our method achieves a more effective balance in
the model’s ability to generalize and handle complex data
patterns while maintaining computational efficiency.

B. Experimental results

We expand on the experimental results by detailing the
datasets and evaluation metrics and presenting additional
experimental findings.

B.1. Description of datasets

To evaluate the performance of our L2S, we carried out ex-
periments across seven different medical image segmenta-
tion datasets, as described below.

B.1.1. Carotid artery segmentation

We used the carotid artery MRI dataset from the CarOtid
Vessel Wall Segmentation And Atherosclerosis Diagnosis
Challenge (COSMOS 2022) [13]. This dataset comprises
75 MR scans, with 45 scans for training (1,875 axial slices),
5 scans for validation (212 axial slices) and 25 scans for
testing (1,241 axial slices). The annotations include both
the Lumen and Outer Wall regions. Our focus is on seg-
menting the vessel wall, defined as the area obtained by
subtracting the Lumen from the Outer Wall label.

B.1.2. Skin lesion segmentation

We used the ISIC2018 segmentation dataset [10], which
consists of 2,594 annotated dermoscopic images aimed at
accurately delineating skin lesion boundaries.

B.1.3. Polyp segmentation

We used the Kvasir-SEG dataset [5], which contains 1,000
polyp images, each paired with a corresponding segmen-
tation mask. These images are derived from various proce-
dures, including colonoscopies, encompassing a wide range
of polyp sizes, shapes, and appearances.

B.1.4. Breast cancer segmentation

We used the BUSI dataset [1] for breast cancer segmen-
tation. To make the model focus on segmentation on dif-
ficult samples, we excluded images labeled ‘normal’ and
used 1,312 images (891 benign and 421 malignant) from
this dataset.

B.1.5. Cardiac organ segmentation

We used the ACDC dataset [2] for cardiac organ segmen-
tation. It contains 100 cardiac MRI scans having three
sub-organs, namely the right ventricle (RV), myocardium
(Myo), and left ventricle (LV). Following TransUNet [3],
we used 70 cases (1,930 axial slices) for training, 10 for
validation, and 20 for testing.

B.1.6. Abdomen organ segmentation

We used the BTCV multi-organ dataset [4] for abdomen or-
gan segmentation. This dataset includes 30 abdominal CT
scans with a total of 3,521 axial contrast-enhanced slices,
averaging 127 slices per scan, each with a resolution of 512
x 512 pixels.

B.1.7. Brain tumor segmentation

We used the BraTS2020 [9] for brain tumor segmentation.
This dataset includes 369 brain MRI scans with a total of
17,391 axial contrast-enhanced slices, each with a resolu-
tion of 240 x 240 pixels.

In our implementation, we used an 80:10:10 train-
validation-test split for the ISIC2018, Kvasir-SEG, BUSI,
BTCYV and BraTS2020 datasets. For the other datasets, we
adhered to the default train-validation-test splits.

B.2. Evaluation metrics

We use the DICE score to evaluate the performance across
all segmentation datasets and include IoU as an additional
metric for four binary segmentation datasets. The DICE
score DSC(Y, P) and IoU IoU (Y, P) are calculated as fol-
lows

2x|Y NP
DSC(Y, P) = |1X/|+|P|| % 100, (16)
and
YnP
[oU(Y, P) = IYUPI % 100, 17)

where Y and P are the ground truth and predicted segmen-
tation map, respectively.



Dataset TS LHS IHS Overlap Jaccard Index (%) Precision (%)
COSMOS 2022 1241 185 204 185 90.69 100.00
ISIC 2018 519 118 130 109 78.42 92.37
BUSI 262 80 101 75 70.75 93.75
Kvasir-SEG 200 33 39 28 63.64 84.85

Table 1. Evaluation of hard sample identification across different datasets, where TS denotes total samples during testing, LHS denotes the
labeled hard samples, and IHS denotes the hard samples identified by our model with a Dice score below 0.7. Besides, overlap represents
the number of intersections between labeled hard samples and identifiable hard samples.

Method COSMOS2022 ISIC2018 Kvasir-SEG BUSI p-value
UNet 8244 +£0.8 87.14+1.8 8563+14 7641 12| 0.007
PolypPVT 8233+13 89.84+24 9144+09 81.05+1.8| 0.035
nnUNet 84.12+£0.6 889116 9055+ 1.1 8094+ 12| 0.037
MedT 82.81 £1.7 88.84+25 89.68+14 80.44+1.8| 0.001
TransUNet 8292 +13 8944+23 91.04+1.8 8032+ 14| 0.001
TransFuses 83.17+£1.6 89.96+3.1 91.27+22 81.50+2.3| 0.010
SwinUNet 83.63 £ 1.1 89.56+20 9022+1.8 79.76 +£1.9| 0.012
MedSegDiffV2 | 82.89 £3.2 89.78 3.3 91.06 +£2.8 80.53+2.4| 0.001
Mask2former | 82.76 £1.3 89.59 +2.1 90.86 +2.0 80.19+1.4| 0.001
L2S 84.16 1.8 90.97 £2.9 91.87 £2.3 81.82+2.0 -

Table 2. The Wilcoxon Signed-Rank Test on the Binary Segmentation Task Dataset Based on DSC.

Method ISIC 2018 Kvasir-SEG
DSC DSC’ DSC DSCT
SAM |[89.58 2.5 59.41 +3.4|8826+£20 5892438

SAM?2 | 88.45+22 579328
L2S 9097 £2.9 63.90 £4.7

86.73 £ 1.6 58.18 £4.1
91.87 +£ 2.3 64.34 £ 3.9

Table 3. Comparison with SAM-based methods. DSC' is com-
puted on the hard samples with dice score below 0.7.

B.3. Effectiveness of hard sample identification

We evaluated whether the predicted hard samples genuinely
reflect the characteristics of dataset-specific hard samples.
While the dataset lacks a precise definition of hard sam-
ples, it is widely accepted that samples with lesion regions
that are challenging to segment accurately qualify as hard
samples. Accordingly, we utilized the lesion labels pro-
vided in the segmentation dataset to define hard samples
for this analysis. Specifically, taking the four datasets from
the first experiment in the main text as examples, the hard
samples are defined as follows: bifurcations and atheroscle-
rotic regions in COSMOS 2022; Melanoma, Basal Cell Car-
cinoma, Dermatofibroma, and hair artifacts in ISIC 2018;
malignant lesions in BUSI; and polyps and flat lesions in
Kvasir-SEG. These hard samples all exhibit significant class
imbalance.

Table | shows the comparison between the labeled hard
samples (LHS) and identified hard samples (IHS) selected
by our hard sample identification module. It can be ob-

served that the majority of the predicted hard samples over-
lap with the labeled hard samples, indicating that our model
effectively identifies hard samples that exhibit dataset-
specific characteristics. Even for datasets like Kvasir-SEG,
which have a relatively low Jaccard Index (overlap ratio),
our method maintains a consistently high precision across
all datasets. It indicates that despite variations in overlap
metrics, the majority of true hard samples are still included
among the identified hard samples.

As observed in Table 1, the number of hard samples iden-
tified by our model exceeds the number of labeled hard sam-
ples in the dataset. This is because hard samples are not
limited to lesion-related instances. To further analyze this,
we visualized other samples identified as hard samples, as
shown in Figure 1. The results demonstrate that the iden-
tified hard samples encompass the types described in the
main text, including structural changes, pathological varia-
tions, and artifacts and noise. It highlights the robust capa-
bility of our hard sample identification module in uncover-
ing various forms of hard samples within the dataset.

B.4. More results on binary segmentation

We have supplemented the corresponding standard devi-
ations and statistical significance of Table 1 in the main
text within Table 2. Our model demonstrates superior per-
formance in five-fold cross-validation, with significantly
higher DSC scores than other models, which is statistically
significant. We further conducted a comparative analysis of
our model against the fine-tuned SAM [6] and SAM2 [11]
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Figure 1. Instances identified as hard samples by our model in different datasets.
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Figure 2. Qualitative results of cardiac organ segmentation on
ACDC dataset.

on the ISIC2018 and Kvasir-SEG datasets. As shown in
Table 3, despite fine-tuning, both SAM models underper-
form compared to our approach. SAM-based methods vali-
date the scaling laws in image segmentation, but human-like
data efficiency—Ilearning from minimal samples—remains
unachieved. We propose an architecture with improved data
efficiency and elucidate its theoretical foundations.

B.5. More results on multi-phase segmentation

We provide qualitative results on the ACDC, BTCV and
BraTS2020 datasets for multi-phase segmentation using
various methods, including our L2S. Figure 2 shows
that the predicted segmentation results of our UNet-based
and Mask2Former-based L2S models have a high over-
lap with the Ground Truth mask, especially in the My-
ocardium (Myo) region, while existing state-of-the-art
methods show segmentation errors. Among these, our L2S
(Mask2Former) achieves the best segmentation results. Fig-
ure 3 presents the qualitative results of different segmen-
tation methods on the BTCV multi-organ dataset, where
most methods face challenges in segmenting the Adrenal

gland (cyan-blue). The comparison results show that our
L2S method performs excellently in segmenting this organ
(see red rectangular box), while also achieving the best seg-
mentation results for other organs. Furthermore, we val-
idated the effectiveness of our model on the BraTS2020
brain tumor segmentation dataset. As shown in Figure 4,
compared to the competing algorithms, our L2S method
demonstrates outstanding performance in the enhancing tu-
mor (red) region. Table 4 presents the accuracy metrics for
the BraT'S2020 brain tumor segmentation task, highlighting
its superiority in challenging sample segmentation.

Methods WT TC ET ET* Avg.
UNet 87.74 8327 7523 35.38 | 82.08
nnUNet 90.38 86.63 78.84 46.66 | 85.28
TransUNet 88.45 8497 7645 38.77 | 83.29
SwinUNet 88.71 85.18 76.52 40.21 | 83.47
TransFuses 90.11 86.44 78.62 45.04 | 85.06
TransBTS 90.62 86.86 79.61 47.12 | 85.70
MedSegDiffV2 | 89.23 85.94 77.28 4223 | 84.15
Mask2former 88.84 8526 77.15 3947 | 83.75
L2S 91.13 87.42 80.29 55.15 | 86.28
Table 4. Dice score for brain tumor segmentation on the

BraTS2020 dataset. ET* denotes the mean value of enhancing
tumor samples with dice score below 0.7.

B.6. Visual comparison on ablation study

Finally, we performed a detailed visualization of the results
from a comprehensive ablation study. Figure 5 illustrates
representative visual outcomes, accompanied by standard
deviations, to elucidate the impact of distinct model com-
ponents. The first two examples (rows 1 and 2) demon-
strate that the integration of CLS and DDPM significantly
enhances the model’s segmentation accuracy. However, for
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Figure 3. Qualitative results of multi-organ segmentation on BTCV dataset. The red rectangular box highlights incorrectly segmented

organs by SOTA methods.
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Figure 4. Qualitative results of brain tumor segmentation on

BraTS2020 dataset. Figure 5. Ablation visualization of different modules for hard sam-

ple segmentation on ISIC2018.

images with complex edge structures (row 3), a notable dis-
parity remains between the model’s segmentation predic-
tions and the ground truth labels, highlighting a critical area
for future research and refinement.
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