
Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding

Supplementary Material

We provide statistics and analysis for visual feature res-
olution (Sec. A), detailed comparisons of computational
cost (Sec. B), detailed results on the ScanRefer dataset [1]
(Sec. C), qualitative comparisons (Sec. D) and potential
limitations (Sec. E) in the supplementary material.

A. Visual Feature Resolution of Different Ar-
chitectures

To analyze the scene representation resolution of point-
based and sparse convolutional architectures, we compare
the resolution changes during the visual feature extraction
process for EDA [11] and TSP3D-B, as illustrated in Fig. 1.
For a thorough examination of the feature resolution of
the sparse convolution architecture, we consider TSP3D-B
without incorporating TGP and CBA. The voxel numbers
for TSP3D-B are based on the average statistics from the
ScanRefer validation set. In point-based architectures, the
number of point features is fixed and does not vary with
the scene size. In contrast, the number of voxel features in
sparse convolutional architectures tends to increase as the
scene size grows. This adaptive adjustment ensures that
features do not become excessively sparse when process-
ing larger scenes. As shown in Fig. 1, point-based archi-
tectures perform aggressive downsampling, with the first
downsampling step reducing 50,000 points to just 2,048
points. Moreover, the final scene representation consists
of only 1,024 points, leading to a relatively coarse repre-
sentation. By contrast, convolution-based architectures pro-
gressively downsample and refine the scene representation
through a multi-level structure. Overall, the sparse convo-
lution architecture not only provides high-resolution scene
representation but also achieves faster inference speed com-
pared to point-based architectures.

B. Detailed Computational Cost of Different
Architectures

We provide a detailed comparison of the inference speed
of specific components across different architectures, as
shown in Tab. 1. Two-stage methods tend to have slower
inference speed and are significantly impacted by the effi-
ciency of the detection stage, which is not the primary fo-
cus of the 3DVG task. Therefore, we focus our analysis
solely on the computational cost of single-stage methods.
We divide the networks of existing methods and TSP3D into
several components: text decoupling, visual backbone, text
backbone, multi-modal fusion, and the head. The inference
speed of each of these components is measured separately.
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Figure 1. Feature resolution progression of point-based EDA and
sparse convolutional TSP3D-B. SA, FP, SpConv, and FU repre-
sent set abstraction, feature propagation, sparse convolution, and
feature upsampling, respectively. For the point-based architec-
ture, the downsampling process is aggressive, with the first down-
sampling reducing 50,000 points directly to 2,048 points. Fur-
thermore, the final scene representation consists of only 1,024
points. In contrast, the sparse convolutional architecture performs
progressive downsampling and refines the scene representation
through a multi-level structure. This approach not only provides a
high-resolution scene representation but also achieves faster infer-
ence speed compared to the point-based architecture.

Backbone. Except for TSP3D, the visual backbone in
other methods is PointNet++ [7], which has a high compu-
tational cost. This is precisely why we introduce a sparse
convolution backbone, which achieves approximately three
times the inference speed of PointNet++. As for the text
backbone, both TSP3D and other methods use the pre-
trained RoBERTa [5], so the inference speed for this com-
ponent is largely consistent across the methods.

Multi-modal Fusion. The multi-modal feature fusion
primarily involves the interaction between textual and vi-
sual features, with different methods employing different
modules. For instance, the multi-modal fusion in SDSPS
mainly includes the description-aware keypoint sampling
(DKS) and target-oriented progressive mining (TPM) mod-
ules. And methods like BUTD-DETR, EDA, and MCLN
rely on cross-modal encoders and decoders for their fu-
sion process. In our TSP3D, the multi-modal fusion in-
volves feature upsampling, text-guided pruning (TGP), and
completion-based addition (CBA). Notably, even though



Table 1. Detailed comparison of computational cost for different single-stage architectures on the ScanRefer dataset [1]. The numbers
in the table represent frames per second (FPS). TSP3D demonstrates superior processing speed across all components compared to other
methods, with the inference speed of the sparse convolution backbone being three times faster than that of the point-based backbone.

Method Text Visual Text Multi-modal Head OverallDecouple Backbone Backbone Fusion

3D-SPS [6] — 10.88 80.39 13.25 166.67 5.38
BUTD-DETR [4] 126.58 10.60 78.55 28.49 52.63 5.91

EDA [11] 126.58 10.89 81.10 28.57 49.75 5.98
MCLN [8] 126.58 10.52 76.92 23.26 41.32 5.45

TSP3D (Ours) — 31.88 81.21 28.67 547.32 12.43

TSP3D progressively increases the resolution of scene fea-
tures and integrates them with fine-grained backbone fea-
tures, it still achieves superior inference speed. This is pri-
marily due to the text-guided pruning, which significantly
reduces the number of voxels and computational cost.

Head and Text Decouple. In the designs of methods
such as BUTD-DETR, EDA, and MCLN, the input text
needs to be decoupled into several semantic components.
Additionally, their heads do not output prediction scores
directly. Instead, they output embeddings for each candi-
date object, which must be compared with the embeddings
of each word in the text to compute similarities and deter-
mine the final output. This can be considered additional pre-
processing and post-processing steps, with the latter signif-
icantly impacting computational efficiency. In contrast, our
TSP3D directly predicts the matching scores between the
objects and the input text, making the head inference speed
over ten times faster than these methods.

C. Detailed Results on ScanRefer

Due to page limitations, we report only the overall perfor-
mances and inference speeds in the main text. To provide
detailed results and analysis, we include the accuracies of
TSP3D and other methods across various subsets on the
ScanRefer dataset [1], as shown in Tab. 2. TSP3D achieves
state-of-the-art accuracy, even when compared with two-
stage methods, leading by +1.13 in Acc@0.5. TSP3D
also demonstrates a level of efficiency that previous meth-
ods lack. In various subsets, TSP3D maintains comparable
accuracy to both single-stage and two-stage state-of-the-art
methods. Notably, the “multi-object” subset involves dis-
tinguishing the target object among numerous distractors of
the same category within a more complex 3D scene. In this
setting, TSP3D achieves a commendable performance of
42.37 in Acc@0.5, further demonstrating that TSP3D en-
hances attention to the target object in complex environ-
ments through text-guided pruning and completion-based
addition, enabling accurate predictions of both the location
and the shape of the target.

D. Qualitative Comparisons
To qualitatively demonstrate the effectiveness of our pro-
posed TSP3D, we visualize the 3DVG results of TSP3D
alongside EDA [11] on the ScanRefer dataset [1]. As shown
in Fig. 2, the ground truth boxes are marked in blue, with the
predicted boxes for EDA and TSP3D displayed in red and
green, respectively. EDA encounters challenges in locating
relevant objects, identifying categories, and distinguishing
appearance and attributes, as illustrated in Fig. 2 (a), (c),
and (d). In contrast, our TSP3D gradually focuses attention
on the target and relevant objects under textual guidance
and enhances resolution through multi-level feature fusion,
showcasing commendable grounding capabilities. Further-
more, Fig. 2 (b) illustrates that TSP3D performs better with
small or narrow targets, as our proposed completion-based
addition can adaptively complete the target shape based on
high-resolution backbone feature maps.

E. Limitations and Future Work
Despite its leading accuracy and inference speed, TSP3D
still has some limitations. First, the speed of TSP3D is
slightly slower than that of TSP3D-B. While TSP3D lever-
ages TGP to enable deep interaction between visual and text
features in an efficient manner, it inevitably introduces addi-
tional computational overhead compared to naive concate-
nation. In future work, we aim to focus on designing new
operations for multi-modal feature interaction to replace the
heavy cross-attention mechanism. Second, the current input
for 3DVG methods consists of reconstructed point clouds.
We plan to extend this to an online setting using stream-
ing RGB-D videos as input, which would support a broader
range of practical applications.



Table 2. Detailed comparison of methods on the ScanRefer dataset [1] evaluated at IoU thresholds of 0.25 and 0.5. TSP3D achieves state-
of-the-art accuracy even compared with two-stage methods, with +1.13 lead on Acc@0.5. In various subsets, TSP3D achieves comparable
accuracy to both single-stage and two-stage state-of-the-art methods. Additionally, TSP3D demonstrates a level of efficiency that previous
methods lack.

Method Venue Unique (∼19%) Multiple (∼81%) Accuracy Inference
0.25 0.5 0.25 0.5 0.25 0.5 Speed (FPS)

Two-Stage Model

ScanRefer [1] ECCV’20 76.33 53.51 32.73 21.11 41.19 27.40 6.72
TGNN [3] AAAI’21 68.61 56.80 29.84 23.18 37.37 29.70 3.19

InstanceRefer [13] ICCV’21 77.45 66.83 31.27 24.77 40.23 30.15 2.33
SAT [12] ICCV’21 73.21 50.83 37.64 25.16 44.54 30.14 4.34

FFL-3DOG [2] ICCV’21 78.80 67.94 35.19 25.7 41.33 34.01 Not released
3D-SPS [6] CVPR’22 84.12 66.72 40.32 29.82 48.82 36.98 3.17

BUTD-DETR [4] ECCV’22 82.88 64.98 44.73 33.97 50.42 38.60 3.33
EDA [11] CVPR’23 85.76 68.57 49.13 37.64 54.59 42.26 3.34

3D-VisTA [14] ICCV’23 77.40 70.90 38.70 34.80 45.90 41.50 2.03
VPP-Net [9] CVPR’24 86.05 67.09 50.32 39.03 55.65 43.29 Not released
G3-LQ [10] CVPR’24 88.09 72.73 51.48 40.80 56.90 45.58 Not released
MCLN [8] ECCV’24 86.89 72.73 51.96 40.76 57.17 45.53 3.17

Single-stage Model

3D-SPS [6] CVPR’22 81.63 64.77 39.48 29.61 47.65 36.43 5.38
BUTD-DETR [4] ECCV’22 81.47 61.24 44.20 32.81 50.22 37.87 5.91

EDA [11] CVPR’23 86.40 69.42 48.11 36.82 53.83 41.70 5.98
G3-LQ [10] CVPR’24 88.59 73.28 50.23 39.72 55.95 44.72 Not released
MCLN [8] ECCV’24 84.43 68.36 49.72 38.41 54.30 42.64 5.45

TSP3D (Ours) —– 87.25 71.41 51.04 42.37 56.45 46.71 12.43
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Figure 2. Qualitative results of EDA [11] and our TSP3D on the ScanRefer dataset [1]. In each description, the red annotations indicate the
target object. The orange annotations in (a) refer to relevant objects, while the yellow annotations in (d) denote the appearance or attributes
of the target. TSP3D demonstrates exceptional performance in locating relevant objects, narrow or small targets, identifying categories,
and distinguishing appearance and attributes.
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