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A.1. Image-based TSDF

We utilize an image-based TSDF [6] that integrates depth
along each ray on the fly from K input depth maps { Dy, k€
(1,...,N)}. Specifically, for a world space point p € R3
along a viewing ray, we use the known camera intrinsics
K and pose parameters R, t of each view to project the
point into the K cameras as (g, Y, 2x) = Kip(Rgp + tg).
Then, we calculate the signed distance sj, as the difference
between the transformed point’s z-value, and D}, sampled at
the normalized pixel locations (ug,vr) = (zx/2k, Yk /2k):

sk = 2k — Dy [ug, v (D

where the square brackets denote the sampling operation.
We drop the superscript ¢ indicating time for convenience.

The truncated signed-distance value s at point p is then
computed by fusing s from all input views as,

K
5= Zwk - clamp(sg, —7,7), 2)
k=1
where 7 = 0.02m is the truncation threshold. The fusion
weight wy, handles noise in the input depth maps and is com-
puted as the depth variation in a w X w pixel neighborhood
N around the projected location (u, vg):

Wy = min(0.00l- (wl:fw)fm, 1.0), 3)
Vg = Z min((Dk[uk,vk] — Dglp, q])2772). 4)
(P,a)EN

We use w = 7 for our experiments and, following Lawrence
et al. [6], set wy =0 if s, < —7. We advance along the ray
with a step size of 0.8s until a surface intersection is detected.
This is indicated by a change of sign in the value of s. We
subsequently perform three steps of a bisection search to
refine the intersection depth.
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A.2. View and Temporally Consistent Depth

We encourage temporal consistency in the TSDF depth map
D! by integrating the rendered depth D?~! from the previous
time frame, along with the input-view depth maps Dj},. To
account for dynamic regions we use the difference masks
M} (Equation (1), main paper) to estimate fusion weights
for D!~L. Specifically, we forward project all K difference
masks into the novel view using Gaussian splatting [5], and
apply a channel-wise maximum to estimate the difference
mask M in the novel-view. We then fuse the signed distance
computed from D!~! into Equation (2), with the temporal
fusion weight wy,,, defined as:

Wipp = Min (3 - wye. - max(1—=M?*,0),7), with  (5)

Whee = Wimp T Z wi ©6)

where =15 is the maximum fusion weight for D*~!, and
[ controls the relative contribution of previous frames.

A.3. Dense Pixel-sized 3D Gaussians

As mentioned in Section 3.1 (main paper), we analytically
compute the scale, rotation, color, and opacity parameters of
dense per-pixel 3D Gaussians from each input view.

This approach contrasts with previous work [12, 15] that
uses a neural network to predict per-pixel Gaussian param-
eters. In our experiments, we observed no advantage from
using a network to predict parameters for the kind of dense
Gaussian point cloud that we get from projecting a depth
map to 3D. One possible motivation for using a network
is that it can learn to inpaint disoclussions by adjusting the
scale of background Gaussians. However, we found that
this ability often comes at the cost of overall reconstruction
PSNR. Thus, we chose to address disocclusions using our
geometry-guided blending network instead.
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Figure 1. Forward rendering a single image. Traditional point
splatting suffers from aliasing artifacts such as empty pixels, and
jagged edges. Network-based models seek to inpaint disocclusions
by allowing the Gaussians’ scale to vary. However, this affects
overall PSNR. Our pixel-scaled Gaussians generate high-frequency
details while avoiding aliasing.

Why use 3D Gaussians at all? We noticed that compared
to traditional point splatting [1], Gaussians enable occlusion-
handling and suffer from fewer aliasing artifacts, such as
jagged edges and gaps between neighboring pixels Figure 1.

A.4. Network Architecture

Our blending network ©(+) is a four-layer U-Net [11]. The
input to the network consist of,

1. The K forward-rendered images {Z}} € R3K>HxW
2. Depth maps {D}} € REXHXW

3. Alpha maps {a}} € REXH*XW

4. The TSDF depth Dt € RIXHXW,

Additionally, we provide camera distance, and viewing angle

information. Specifically, we use

5. The dot product between each input-view ray direction,
and the normals from the TSDF depth D!, €¢ RE*HxW

6. The dot product between each input-view ray direction,
and the target view direction, € RE>XHxW,

7. The distance between the input and target cameras, re-
peated spatially to get a map € RE*XHXW,

8. The dot product between the input and target viewing
directions, repeated spatially to get a map € REXH*W,

In summary, the input to ©(+) is a tensor € R(OKH)xHxW

A.S5. Training Procedure

We use the ScanNet [3], DyNeRF [7], and Google Spaces
dataset [4] to train our network. ScanNet provides a dense
views of general indoor scenes captured with a depth sensor.
We use three scenes from DyNeRF to account for large-
baseline stereo scenarios, and utilize the remaining scenes
for testing. The Google Spaces dataset is used to provide
training in small-baseline stereo settings. For the ScanNet
dataset, we first select a novel time frame and then choose
corresponding input frames from a range of £30 frames, ex-
cluding frames [—4, 4] to avoid selecting the closest frames
to the novel view. In contrast, for the DyNeRF and Spaces
datasets, we manually curate stereo pairs and generate depth

maps for each view using RAFT-Stereo [10]. We then ran-
domly choose input and novel views from at a fixed time
frame for training.

A.6. Testing Datasets

The DyNeRF dataset [7] consists of 18-22 cameras with
a resolution of 2704x2028 pixels, and features well-
synchronized indoor scenes. We use two scenes containing
22 cameras as the test set. We test all methods at half the
original resolution (1352x 1014 pixels).

The ENeRF-outdoor dataset [8] consists of 18 cameras
capturing multiple actors in an outdoor setting. Each camera
has a resolution of 1920x 1080 pixels. Again, we use half
the original resolution (960x540) for testing all methods.
Furthermore, we found that this dataset has imperfect camera
synchronization, and suffers from color calibration errors.
To mitigate the impact of these on quantitative metrics, we
further downscale the rendered images to 480270 for the
quantitative evaluation in Tables 1 and 2 of the main paper.

The D3DMV dataset [9] includes 10 cameras capturing
outdoor scenes. We use the compressed version of the datset
with a resolution of 640x360 pixels.

A.7. Evaluation Procedure

For all three datasets, we use the provided camera parameters.
We evaluate the metrics for the first 100 frames. We select a
subset of cameras as the test views. We use nine test views
for DyNeRF, three test views for ENeRF, and four test views
for the D3DMYV dataset. We select the K input cameras
closest to the test view — excluding the test view itself — as
inputs. We use K = 4 for DyNeRF and ENeRF-outdoor,
and K =2 for D3ADMYV in accordance with existing online
multi-view methods [6, 8, 9, 12, 15].

A.8. Additional Results

Background image blending. Figure 2 shows the impact
of background image blending in our network, allowing it to
inpaint disocclusion holes in forward-warped images.

No BG Blending
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Figure 2. Impact of background blending. Our background image
blending successfully inpaints the empty regions in the forward-
warped images caused by occluded areas in the input views.
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Figure 3. Qualitative comparison on the ENeRF-Outdoor [8]
dataset. The baseline methods produce blurry results despite per-
scene optimization with dense views (4DGS, 4K4D) or a pretrained
network with sparse views (MVSplat). Our method reconstructs
fine details, including both moving humans and the background.

Additional comparisons. We additionally compare our
method with offline dynamic scene reconstruction methods
(4DGS [13] and 4K4D [14]), and sparse multi-view recon-
struction method (MVSplat [2]) in Figure 3. Even though
4K4D and 4DGS optimize per scene and use more views
(K =17), our method shows better and sharper results.
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