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Supplementary Material

This supplementary document provides additional techni-
cal details and experimental results to complement the main
material. Specifically, we first outline some technical details
pertinent to our framework in Suppl. A. Then, we evaluate
in Suppl. B the alignment performance using a different text
encoder, T5. Next, we extend the matching and top-5 down-
stream results from Table 1 in the main paper by including
top-1 and top-10 retrieval scores in Suppl. C. Furthermore,
in Suppl. D, we examine the impact of chosen subspace
dimensions across different pairs of text and 3D encoders.
These additional results provide a more comprehensive un-
derstanding of our alignment approach and its robustness
across different configurations.

A. Implementation Details
In our framework, we use mean pooling for text encoders
to obtain a fixed-size text representation. While we also
experimented with using a class token for text encoding, it
yielded consistently similar results. For 3D encoders, we
extract the global output feature as the final representation.

The embedding size is set to 512 whenever possible, with
the option to use projection layers when necessary. How-
ever, for multi-modal pre-trained models and certain text
encoders, the embedding dimension may vary. In such cases,
we adopt two distinct strategies: (1) for Canonical Correla-
tion Analysis (CCA)-based approaches (Ours), the maximum
subspace dimension is determined as the minimum of the
embedding sizes of the 3D and text encoders; (2) for affine
transformation-based alignment, we follow prior work by
padding the lower-dimensional representation to match the
higher-dimensional one.

For training parameters and dataset configurations related
to uni-modal encoders, we adhere to the OpenShape settings,
ensuring consistency with existing benchmarks.

B. Evaluation with an Additional Text Encoder
To further evaluate the generalization of our alignment ap-
proach, we test it using an additional text encoder, T5. Un-
like BERT, RoBERTa, and CLIP’s text encoder, which are
encoder-only architectures, T5 follows an encoder-decoder
structure. We average its encoder output embeddings and
use the resulting vector as the text representation.

As shown in Tab. 3, while T5 does not achieve the same
performance as CLIP’s text encoder, it consistently outper-
forms other uni-modal text encoders, such as BERT and
RoBERTa, in alignment tasks. These results suggest that
the encoder-decoder structure may provide richer text repre-
sentations for cross-modal alignment, although multi-modal

encoders like CLIP text encoder remain superior for this
task.

C. Downstream Results
We extend our evaluation by including top-1 and top-10 re-
trieval metrics, which complement the matching and top-5
results presented in the main paper by offering additional
perspectives. As shown in Tab. 2, these results emphasize the
consistency of our findings: the combination of local CKA
and our proposed subspace projection method consistently
achieves superior performance in retrieval tasks, whereas the
affine approach demonstrates better results in matching tasks
(Table 1). This highlights that method performance can vary
significantly depending on the downstream task, reflecting
the distinction between overall assignment accuracy (match-
ing) and query-specific precision (top-1 retrieval). Among
uni-modal 3D encoders, PointBERT performs best. Mean-
while, CLIP continues to excel as the most effective text
encoder, which shows its generalizability across modalities.

The alignment approaches studied thus far exhibit limited
generalization to the zero-shot classification downstream
task. In particular, top-1 accuracy on Objaverse-LVIS re-
mains below 3% even for the best-performing uni-modal
3D encoders when aligned with text encoders which is way
lower to the 40% and more attained by OpenShape. This
performance bottleneck can be attributed primarily to the
repetitive nature of the captions used in this task: instances
within the same class often share identical or nearly identical
textual descriptions, leading to duplicated text embeddings.
This opens up a new direction to enhance these approaches
with zero-shot classification capabilities.

D. Additional Ablations

Dimensionality’s impact on alignment. We generalize
the dimension analysis to additional pairs of text and 3D
encoders in Fig. 8, extending the findings presented in the
main paper. The results confirm that our method consis-
tently achieves better alignment in low-dimensional sub-
spaces across all evaluated pairs, which reaffirms the impor-
tance of dimensionality reduction to enable our subspace
projection approach. The optimal subspace dimension is of-
ten consistent across different encoders, but exceptions are
observed. For example, MinkowskiNet exhibits improved
performance at higher dimensions (e.g. 200 vs. 50), which
shows that encoders have representations that might align
differently. This variability highlights that the ideal subspace
dimension for balancing geometric and semantic features,
while being low, is not fixed but encoder-dependent.



Method 3D Encoder CLIP RoBERTa BERT
Top-1 retrieval Top-10 retrieval Top-1 retrieval Top-10 retrieval Top-1 retrieval Top-10 retrieval

Multi-modal 3D encoder
Affine + Subspace Projection OpenShape 56.4 90.8 38.8 81.8 32.4 78.8
Affine + Subspace Projection ULIP-2 54.2 90.2 37.0 80.8 29.2 69.2
Affine + Subspace Projection Uni3D 47.0 89.0 29.4 73.8 19.0 59.4

Uni-modal 3D encoder
Affine PointBert 9.8 37.2 42 22.2 3.4 22.6
Affine SparseConv 10.6 46.2 8.0 29.4 3.2 20.4
Affine Pointnet 7.0 30.2 3.4 22.0 3.0 20.0

Affine + Subspace Projection (Ours) PointBert 18.0 57.4 10.8 36.6 7.6 25.8
Affine + Subspace Projection (Ours) SparseConv 13.0 58.0 8.2 29.4 5.2 21.0
Affine + Subspace Projection (Ours) Pointnet 14.0 44.8 7.0 35.8 6.6 23.8

Local CKA PointBert 5.4 24.4 0.2 4.0 0.8 7.19
Local CKA SparseConv 3.4 23.59 0.2 3.2 0.6 6.4
Local CKA Pointnet 4.2 28.19 0.0 3.59 1.0 8.0

Local CKA + Subspace Projection (Ours) PointBert 30.0 70.8 17.8 54.4 13.6 51.0
Local CKA + Subspace Projection (Ours) SparseConv 21.2 64.0 14.79 42.4 11.4 41.4
Local CKA + Subspace Projection (Ours) Pointnet 23.79 62.6 15.8 49.2 14.6 45.4

Table 2. Top-1 and top-5 retrieval accuracy across 3D and text encoders using different alignment approaches. We use 30,000 anchors
for subspace projection and affine transformation approaches, and 1,000 anchors for local CKA. A query set of 500 is uniformly sampled,
with results averaged over 3 different seeds. The subspace dimension is fixed at 50. Our approach (Ours) consistently demonstrates improved
retrieval performance, with multi-modal 3D encoders setting the upper bound for performance.

Method 3D Encoder T5
Matching accuracy Top-5 retrieval

Multi-modal 3D encoder
Affine + Subspace Projection (Ours) OpenShape 65.0 82.6
Affine + Subspace Projection (Ours) ULIP-2 51.8 73.2
Affine + Subspace Projection (Ours) Uni3D 53.6 67.0

Uni-modal 3D encoder
Affine + Subspace Projection (Ours) PointBert 21.6 28.4
Affine + Subspace Projection (Ours) SparseConv 22.8 23.2
Affine + Subspace Projection (Ours) Pointnet 21.6 22.0

Table 3. Matching and Top-5 retrieval accuracy using T5 text encoder and different 3D encoders. The Affine + Subspace Projection
(Ours) method is evaluated across both multi-modal and uni-modal 3D encoders. T5 is better aligned to 3D encoders compared to other
uni-modal text encoders as presented in Table 1 of the main paper.
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(a) CLIP and PointBert
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(b) CLIP and MinkowskiNet
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(c) CLIP and PointNet
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(d) RoBERTa and PointBert
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(e) RoBERTa and MinkowskiNet
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(f) RoBERTa and PointNet
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(g) BERT and PointBert
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(h) BERT and MinkowskiNet
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(i) BERT and PointNet

Figure 8. Impact of subspace dimensionality on retrieval performance. Comparison of two approaches: our proposed CCA + affine
translation method (blue) and affine translation without subspace projection (red). Each plot corresponds to a pair of Text Encoder and 3D
Encoder. Optimal downstream performance is obtained with low-dimensional subspace projection, although the exact dimension differs
from encoder to another.
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