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6. Extra qualitative results
DSEC. We present additional qualitative results from the
DSEC test set in Fig. 8. While the self-supervised results
exhibit less sharp boundaries, they are free from artifacts
commonly introduced by supervised learning, such as dis-
continuities at image borders and around thin objects.

Robot experiments. Figs. 9 to 12 show extended qualita-
tive results for four unseen scenes from flight experiments.
Looking at Fig. 9, we see that network’s ability to maximize
the contrast of the image of warped events increases quickly
from “step 0” (only pre-training) to “step 3k” (pre-training +
100 seconds of learning). While this improvement in terms
of contrast maximization loss may be mostly due to just
learning the correct magnitude of the optical flow (as shown
by the change from orange to purple in column 3, and black
to red in column 5) through scaling depth and ego-motion,
subsequent learning steps improve the depth map in more
sophisticated ways, judging from the disappearance of the
wrong “depth gap” in the center of the disparity images in
the third and fourth column. Similar priorities in learning
patterns can be seen in the other scenes.

7. Implementation details
Training. For offline training on datasets, we train for 50
epochs with the Adam optimizer and a learning rate of 1e-
4. For contrast maximization, we accumulate 10 bins of
events, and warp all events to all bin edges. Furthermore,
we set the weight for the geometric consistency loss λ =
0.05. For on-device learning, we lower the learning rate
to 1e-5. Specifics per dataset are mentioned below. In all
cases, event streams are undistorted and rectified.

For MVSEC, we train on outdoor_day2 with input
bins of 20 ms of events. We use a batch size of 8, and aug-
ment the data with polarity and left-right flips. Training
takes around 50 minutes on an RTX 4090.

For DSEC, we train on the daylight sequences
in the training set (interlaken_00_∗ and
zurich_city_{04,05,06,07,08,11}_∗). We
leave thun_00_a for validation. Because of DSEC’s
high event density and large frames, we lower the batch
size to 4, and bin events to 10 ms frames with a cap of
100k events per bin (if there are more events, we end the
bin prematurely; we do not discard events). In addition
to polarity and left-right flips, we augment by reversing
the time dimension, as we saw that this lessened border

artifacts with wrong optical flows. Training takes around
11 hours on an RTX 4090.

For UZH-FPV, we train on the forward indoor sequences
(indoor_forward_{3,5,6,7,9}_davis_with_gt
and indoor_forward_{8,11,12}_davis). Se-
quence indoor_forward_10_davis_with_gt is
left for validation. We use 10 ms bins of events, a batch
size of 8 and polarity and left-right flips. Training takes
approximately 30 minutes on an RTX 4090.

Network architecture. We make use of a small convolu-
tional recurrent network to predict depth and ego-motion.
The encoder and memory backbone are shared between the
depth and ego-motion decoders. Tab. 3 lists the details per
layer. In addition, we make use of ELU activations as we
experienced dying ReLUs. Also, to prevent border artifacts,
we use reflect padding for all convolutional layers.

Depth-based control. We slice depth maps into K = 8
vertical bins, compute a vector of average inverse depths
(disparities) d ∈ R8, and use it to set a target yaw rate.
Furthermore, λgoal = 0.2, λavoid = 1.0, α = 0.5, σ = 12.0.

Drone setup. We built a 5-inch quadrotor for our robot
experiments. The drone is equipped with on-board sensors
that provide the flight controller with all relevant informa-
tion to follow high-level control commands. More specifi-
cally, the EKF running on the Kakute H7 Mini flight con-
troller fuses IMU measurements with velocity and height
measurements coming from an MTF-01 optical flow/range
sensor into a stable position and velocity estimate. This al-
lows a neural network (like our depth network) to give high-
level commands like velocity setpoints or rotational rates.

All relevant components on the drone, along with their
weight and power consumption, can be found in Tab. 4.
Communication on the Orin is handled with ROS2 [25],
which also allows for logging to rosbags, and can be con-
nected via UART to the internal publish-subscribe messag-
ing API of the PX4 flight controller firmware.

The power consumption during flight is measured by
keeping track of the total mAh consumed by over two flight
tests. Together with the measured power consumption of
the Jetson using jtop and the expected maximum power
draw of both cameras, this allows us to calculate the power
consumption of the drone (see Tab. 4).
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Layer type Input shape Output shape # Parameters

Encoder
Conv2D(ksize=7, stride=2) (2, H,W ) (16, H/2,W/2) 1,584
ResidualConv2D(stride=2) (16, H/2,W/2) (32, H/4,W/4) 18,528
ResidualConv2D(stride=2) (32, H/4,W/4) (64, H/8,W/8) 73,920

Memory ConvGRU (64 + 64, H/8,W/8) (64, H/8,W/8) 221,568

Depth
Conv2D (64, H/8,W/8) (64, H/8,W/8) 36,928
Conv2D(bias=False) w/ SoftPlus (64, H/8,W/8) (1, H/8,W/8) 576
Upsample(scale=8, "bilinear") (1, H/8,W/8) (1, H,W )

Ego-motion

Conv2D(stride=2) (64, H/8,W/8) (64, H/16,W/16) 36,928
Conv2D(stride=2) (64, H/16,W/16) (64, H/32,W/32) 36,928
Conv2D(bias=False) w/ Identity (64, H/32,W/32) (6, H/32,W/32) 3,456
AdaptiveAvgPool2D (6, H/32,W/32) (6, 1, 1)

Table 3. Network layer details. Unless specified otherwise, we use ELU activations, and a kernel size of 3, biases and “reflect” padding for
convolutional layers. Total parameter count is 430,416.

Component Product Mass [g] ∼Power [W]

Frame Armattan Marmotte 5 inch

455 200†

Motors Emax Eco II Series 2306
Propellers Ethix S5 5 inch
Flight controller Holybro Kakute H7 Mini
Optical flow & range sensor MicoAir MTF-01
ESC Holybro Tekko32 F4 4in1 mini 50A BL32
Receiver Radiomaster RP2 V2 ELRS Nano

Battery iFlight Fullsend 4S 3000mAh Li-Ion 208 -

On-board compute NVIDIA Jetson Orin NX 16GB & DAMIAO v1.1 carrier board 62 9∗

Event camera iniVation DVXplorer Micro 22 max 0.7‡

Stereo camera Intel RealSense D435i 75 max 3.5‡

Total - 822 213.2

Table 4. List of hardware components used during robot experiments. Power consumption estimates are obtained from Jetson’s jtop∗,
battery drain during flight experiments†, or component datasheets‡.
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Figure 8. Additional qualitative results of disparity predictions on the DSEC disparity benchmark. Images are for visualization only, as
disparity estimation is event-based. The same color map is applied to the disparity values from the stereo- and supervised-learning-based
method from Cho et al. [8] and ours for easy comparison.
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Figure 9. Extended qualitative results on unseen data from a flight test recording. From top to bottom, we evaluate a pre-trained-only
network (“step 0”), then four networks after increasing amounts of online learning (OL), and finally a network trained-from-scratch. The
bottom row starts with the single 20 ms bin of events currently seen by the network. The rest of the second column shows the accumulated
events (multiple bins) in the current contrast maximization loss window. Applying the iterative warp by the optical flow constructed from
depth and ego-motion gives the warped and deblurred events in the first column. Columns three and four show disparity at a global (color
map shared between rows) and local (color map for only that row) scale. The last two columns show optical flow constructed from depth
and ego-motion with global and local color maps, respectively.
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Figure 10. Extended qualitative results on unseen data from a flight test recording. From top to bottom, we evaluate a pre-trained-only
network (“step 0”), then four networks after increasing amounts of online learning (OL), and finally a network trained-from-scratch. The
bottom row starts with the single 20 ms bin of events currently seen by the network. The rest of the second column shows the accumulated
events (multiple bins) in the current contrast maximization loss window. Applying the iterative warp by the optical flow constructed from
depth and ego-motion gives the warped and deblurred events in the first column. Columns three and four show disparity at a global (color
map shared between rows) and local (color map for only that row) scale. The last two columns show optical flow constructed from depth
and ego-motion with global and local color maps, respectively.



St
ep

 0

Warped Events Accumulated Events Disparity Global Scale Disparity Local Scale Optical Flow Global Scale Optical Flow Local Scale

St
ep

 3
K 

(O
L)

St
ep

 6
K 

(O
L)

St
ep

 9
K 

(O
L)

St
ep

 1
2K

 (O
L)

St
ep

 1
2K

 (T
FS

)

Inp
ut 

Ev
en

ts

Disp
ari

ty 
GT

Im
ag

e

Figure 11. Extended qualitative results on unseen data from a flight test recording. From top to bottom, we evaluate a pre-trained-only
network (“step 0”), then four networks after increasing amounts of online learning (OL), and finally a network trained-from-scratch. The
bottom row starts with the single 20 ms bin of events currently seen by the network. The rest of the second column shows the accumulated
events (multiple bins) in the current contrast maximization loss window. Applying the iterative warp by the optical flow constructed from
depth and ego-motion gives the warped and deblurred events in the first column. Columns three and four show disparity at a global (color
map shared between rows) and local (color map for only that row) scale. The last two columns show optical flow constructed from depth
and ego-motion with global and local color maps, respectively.
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Figure 12. Extended qualitative results on unseen data from a flight test recording. From top to bottom, we evaluate a pre-trained-only
network (“step 0”), then four networks after increasing amounts of online learning (OL), and finally a network trained-from-scratch. The
bottom row starts with the single 20 ms bin of events currently seen by the network. The rest of the second column shows the accumulated
events (multiple bins) in the current contrast maximization loss window. Applying the iterative warp by the optical flow constructed from
depth and ego-motion gives the warped and deblurred events in the first column. Columns three and four show disparity at a global (color
map shared between rows) and local (color map for only that row) scale. The last two columns show optical flow constructed from depth
and ego-motion with global and local color maps, respectively.


