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In this appendix, we first highlight the conceptual fea-
tures of our unsupervised panoptic segmentation method
CUPS. We elaborate on the training and validation ap-
proach as well as on implementation details to facilitate re-
producibility. Next, we conduct further analyses of differ-
ent design choices and the training stages. We then provide
additional quantitative and qualitative results. Finally, we
discuss the limitations of current unsupervised panoptic ap-
proaches as well as our CUPS approach.

A. CUPS vs. U2Seg: A Conceptual Comparison
Table 8 conceptually compares CUPS to U2Seg [55]. While
both frameworks address the problem of unsupervised
panoptic segmentation, CUPS features novel distinctions:
(1) Scene-centric training. Object-centric images typically
depict a center-aligned foreground object on a fairly homo-
geneous background. The photographic bias inherent to
this type of imagery also implies the need for manual cu-
ration in the data collection process. By contrast, scene-
centric data encapsulates the complexity of real-world envi-
ronments where multiple objects coexist and interact. Fur-
thermore, collecting scene-centric imagery is substantially
cheaper, since it obviates the need for artificially isolating
objects from their context. Training on scene-centric data is
crucial to producing models that are capable of understand-
ing real-world complexity and serving the needs of chal-
lenging applications, such as autonomous driving, robotic
navigation, augmented reality, and assistive technologies
for visually impaired individuals. Although we are not the
first to leverage motion for retrieving instance cues, accom-
plishing this in a self-supervised fashion is a novel aspect in
the context of unsupervised panoptic segmentation.
(2) High-resolution pseudo labels. High-resolution train-
ing is crucial for capturing fine details in scene-centric data,
which lower-resolution settings cannot address. Our depth-
guided semantic inference (cf . Sec. 3.1) provides a seman-
tic pseudo-labeling component with twice the resolution of
previous methods. This enhancement allows CUPS to learn
semantic cues to a higher degree of detail, which can be
observed in our qualitative results (cf . Fig. 7).
(3) Thing-stuff separation. Our integration of motion
cues enables a precise distinction between semantic pseudo

Table 8. A conceptual comparison of CUPS and U2Seg.

U2Seg [55] CUPS (Ours)

Unsupervised panoptic segmentation ✁ ✁
Scene-centric training ✂ ✁
High-resolution pseudo labels ✂ ✁
Thing-stuff separation → ✁

“thing” and pseudo “stuff” classes. This is because mo-
tion helps us identify “thing” classes as objects that move
relative to the camera. In contrast, U2Seg cannot really
distinguish between “stuff” and “thing” classes; this am-
biguity is only resolved at test time via oracle matching of
the pseudo labels with ground-truth semantic categories and
object instances. The capacity of CUPS to discriminate be-
tween “stuff” and “thing” categories is an advancement to-
ward solving unsupervised panoptic segmentation in a more
principled way.

B. Reproducibility
To facilitate reproducibility, we elaborate on the technical
and implementation details. Note that our code is available
at https://github.com/visinf/cups.

B.1. Implementation details
CUPS is implemented using PyTorch [89], PyTorch Light-
ning [87], and Kornia [90]. We partly build upon public
codebases from previous work [30, 55, 62, 65, 66].

Stage 1. CUPS pseudo-label generation uses 27 pseudo
classes and a thing-stuff threshold ωts of 0.08. This setting
enables comparison against existing unsupervised panop-
tic and semantic segmentation approaches without relying
on significant overclustering (cf . [55]). Instance pseudo la-
beling uses motion and depth estimates from a pre-trained
SMURF model [66]. For our ensembling-based SF2SE3
clustering, we build upon the original implementation by
Sommer et al. [65]. Semantic pseudo labeling uses a pre-
trained SMURF [66] to generate the depth to train the se-
mantic segmentation network following Sick et al. [62].
For depth-guided semantic inference, we first resize the in-
put image so that its smaller side is 320 pixels, matching
the standard resolution in unsupervised semantic segmenta-
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tion. We then perform a second inference pass using slid-
ing windows on an image scale of 640 pixels with a stride
of half the window size. Depth-guided semantic inference
uses the SMURF depth estimate to weight the two seman-
tic segmentation predictions. The size of the sliding win-
dow is half the image width and height. Finally, we per-
form post-processing by further aligning the prediction to
the image using a fully connected conditional random field
(CRF) [43, 92].

For a fair comparison and to demonstrate the impact
of our pseudo labeling as well as the proposed training
scheme, we use the same panoptic network as U2Seg.
In particular, we follow Niu et al. [55] by employ-
ing the Panoptic Cascade Mask R-CNN [8, 39] with a
ResNet-50 [32] backbone pre-trained using self-supervised
DINO [12] for two epochs on ImageNet [91].
Stage 2. CUPS pseudo-label bootstrapping proceeds by
training for 4 000 steps with AdamW [48], using a learning
rate of 10!4, and a weight decay of 10!5. The drop-loss
overlap threshold ε IoU is set to 0.4. After 1 000 steps, we
start utilizing our self-enhanced copy-paste augmentation,
randomly pasting between 1 and 8 objects into each image.
Stage 3. CUPS self-training runs for 1 500 steps using
AdamW with a learning rate of 10!5 and no weight decay.
The EMA decay for updating the momentum network is set
to 0.9999. We only update the detection heads, the mask
head, and the semantic head, freezing all normalization lay-
ers. For self-labeling augmentation, we use three different
scales of the original image (0.75, 1.0, and 1.25), as well
as horizontal flips at each scale, resulting in six views. We
follow Chen et al. [14] to set up the photometric augmen-
tation and employ our self-enhanced copy-paste augmenta-
tion also during self-training.

For both pseudo-label training and self-training, we uti-
lize four NVIDIA A100 GPUs (40 GB) with a batch size
of 16 per GPU. We evaluate CUPS on the native resolution
of each dataset, except for unsupervised semantic segmen-
tation (cf . Tab. 3) where we follow the common evaluation
protocol [19, 30, 35, 62].

B.2. Computing panoptic quality
As we train without any supervision, the semantic pseudo-
class IDs are not aligned with the ground-truth seman-
tic class IDs. Therefore, to compute the panoptic quality
(PQ) [40], we need to align the pseudo-class IDs with the
ground truth, distinguishing between “thing” and “stuff” se-
mantic categories at the same time.

While U2Seg [55] also utilizes the panoptic quality and
proposes an elaborate matching approach, significant limi-
tations remain. Niu et al. [55] establish a semantic match-
ing using three steps. First, predicted segments are matched
with all ground-truth segments, ignoring the “thing” and
“stuff” separation. Segments with an overlap of less than a

pre-defined threshold (hyperparameter) are discarded. Sec-
ond, using the set of matched segments and both the seman-
tic pseudo-class IDs and the ground-truth class IDs, a cost
matrix is constructed on a per-segment basis. Third, for
each semantic pseudo class, the most frequent ground-truth
class ID based on the cost matrix is matched. This match-
ing approach entails two significant limitations. First, the
overlap threshold is a crucial hyperparameter and can sig-
nificantly impact the final PQ value. This is mainly due
to the fact that the segment-wise cost matrix finds rela-
tively few overlapping objects, and thresholding is required
to consider only accurate predictions for matching. Sec-
ond, the matching approach does not consider the “thing”
and “stuff” separation, leading to matches between both
“thing” and “stuff” categories. This is highly undesired as
“thing” segments entail object-level masks, whereas “stuff”
segments only capture the semantic level. Finally, code for
evaluation on the Cityscapes dataset has not been published
by the authors of [55].
Principles. We redefine the matching process in alignment
with the following core principles: Simplicity: Introduc-
ing additional hyperparameters within the matching is un-
desirable, as it complicates evaluation. Semantic segmenta-
tion is a pixel-wise classification, hence we aim to perform
matching of the pseudo classes to ground-truth classes on
the pixel level as well. More specifically, every predicted
pixel should be considered in the alignment between pseudo
classes and ground-truth annotations. This resembles the
simplest form of approaching the problem and is common in
unsupervised semantic segmentation [19, 30, 35, 62]. Clear
thing and stuff separation: The distinction between “thing”
and “stuff” classes is a core aspect of panoptic segmenta-
tion. Consequently, it should be addressed by the method
itself rather than the matching process. To ensure align-
ment, only pseudo classes labeled as “stuff” are matched
with “stuff” ground-truth classes, and the same applies to
“thing” classes.
Approach. To this end, we propose a simple but effective
approach for matching. Taking inspiration from the estab-
lished semantic matching for the task of unsupervised se-
mantic segmentation [19, 30, 35, 62], we perform matching
purely utilizing semantics. In particular, we obtain the se-
mantic segmentation prediction P̄ → {1, . . . , ϑp}H→W from
the unsupervised panoptic prediction, with ϑp denoting the
number of pseudo classes. We use the ground-truth seman-
tic segmentation P̂ → {1, . . . , ϑGT}H→W, with ϑGT indicat-
ing the number of ground-truth semantic classes, to con-
struct a cost matrix A → Nωp→ωGT . This cost matrix counts
the number of overlapping pixels of each pseudo-class ID
with all ground-truth class IDs. The full cost matrix is ob-
tained using all validation samples. To ensure no “thing”
class ID is matched to a “stuff” class ID or vice versa, we
extract a “thing” and a “stuff” cost matrix from the full cost



matrix A. By using the “thing” and “stuff” splits of classes
in the pseudo classes as well as the ground-truth classes, we
construct a “thing” cost matrix A

Th → NωTh
p →ωTh

GT and “stuff”
cost matrix A

St → NωSt
p →ωSt

GT . Hungarian matching [44] is
then applied to maximize overlap and establish a one-to-one
matching between pseudo-class IDs and ground-truth class
IDs by running matching on A

Th and A
St, separately. As

we can have more semantic pseudo-class IDs than ground-
truth class IDs (i.e., ϑTh

p > ϑTh
GT and/or ϑSt

p > ϑSt
GT), we as-

sign all remaining pseudo classes, not assigned by Hungar-
ian matching, to the respective ground-truth class ID with
the maximum overlap. This process leads to a permutation
of the pseudo-class IDs, maximizing the overlap with the
ground-truth class IDs while adhering to the “thing” and
“stuff” separation. Finally, we utilize the permuted (i.e.,
matched) semantics alongside the instance mask—the bi-
nary masks predicted for instances—to compute PQ. For
evaluating on the task of unsupervised semantic segmenta-
tion, we skip the step of separating A into A

Th and A
St and

perform a single matching on A as done by the related work
in the field [19, 30, 35, 62].

To conclude, our class matching for unsupervised panop-
tic quality builds on established protocols, performs a
straightforward and efficient matching, and adheres to the
“thing” and “stuff” class split, while not introducing any
hyperparameters. Interestingly, we observe that evaluating
U2Seg with our matching leads to better panoptic quality
than reported in the original paper (cf . Tab. 1). This sug-
gests that we find a better correspondence between pseudo
and ground-truth classes. We make the evaluation code for
all settings publicly available to facilitate future research.

B.3. Datasets

We provide further details about the datasets used to train
and evaluate CUPS.

Cityscapes [21] is an ego-centric driving scene dataset,
which contains 5 000 high-resolution images with
2048↑1024 pixels. It is split into 2 975 train, 500
val, and 1 525 test images with pixel-level annotations
provided for grouping into 27, 19, or 7 categories. Each
of the training images stems from a short video sequence.
We leverage all 86 275 video frames of the training split for
unsupervised training and evaluate on the validation split,
in line with previous work.

The KITTI [26, 53] vision benchmark suite is a compre-
hensive driving-scene dataset with ground truth for a variety
of tasks, such as semantic segmentation, optical flow esti-
mation, depth estimation. Mohan et al. [53] introduced the
KITTI panoptic segmentation dataset for urban scene un-
derstanding by providing panoptic annotations for a subset
of 1 055 images. The images have a resolution of 1280↑384
pixels and adhere to the 19-class grouping of the Cityscapes

Table 9. Comparison of motion networks for pseudo-label
generation. Investigating the contribution of the correspondence
matching network, using PQ, SQ, and RQ (in %, →) for pseudo
labels generated on Cityscapes val. We use our full configuration
and only change the motion network.

Optical flow method PQ SQ RQ
BrightFlow [88] (unsupervised) 17.8 46.4 22.4
SMURF [66] (unsupervised) 18.1 47.3 22.6

SEA-RAFT [93] (supervised) 19.2 51.8 23.4
RAFT [71] (supervised) 20.4 52.6 24.7

taxonomy. We use the 200 validation images for evaluation.
Furthermore, we use all 42 150 rectified KITTI images ex-
cluding the validation split and calibration scenes for unsu-
pervised training.
BDD [84] is a driving scene dataset, which also contains
panoptic annotations with 19 class definitions identical to
those in Cityscapes. The images have a resolution of
1280↑720 pixels. The validation set contains 1 000 images.
MUSES [7] is a multi-modal dataset representing adverse
conditions in driving scenes. The labels use the 19 class tax-
onomy of Cityscapes. For evaluation, we utilize the “day-
time clear” validation split, containing 50 images with a res-
olution of 1920↑1080.
Waymo [68] is a another driving scene dataset. We use the
“front” camera, providing a resolution of 1920↑1280 pixels
and evaluate using the 1 930 images of the 2D panoptic seg-
mentation validation split. Waymo classes are remapped to
ensure compatibility of its label space with the Cityscapes
classes, resulting in 16 classes.
MOTS [75] allows to assess scene-centric panoptic seg-
mentation outside of driving scenarios. Evaluation is
performed using the MOTChallenge sequences for multi-
object tracking and segmentation of humans in indoor and
outdoor scenes. The annotations include two classes “back-
ground” and “person”, where “background” is considered
as a “stuff” class and “person” is a “thing” class. We evalu-
ate on 2 862 images of resolutions 640↑480 or 1920↑1080.

C. Additional Results
In the following, we analyze the results presented in the
main paper in greater detail.

C.1. CUPS pseudo-labels results

Supervised vs. unsupervised optical flow. In conjunc-
tion with the pseudo-label generation analysis presented in
Tab. 5, we investigate the influence of different approaches
for optical flow and two-frame disparity estimation on our
pseudo labels in Tab. 9. Identical to the analysis in the main
paper, we generate pseudo labels on the validation split to
ensure comparability with the CUPS panoptic segmentation
results and CUPS analysis.



Image Ground Truth Low Resolution High Resolution Depth Guided (Ours)

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 6. Depth-guided semantic pseudo-label examples. Qualitative semantic pseudo-label examples comparing low resolution Plow,
high resolution Phigh, and depth-guided semantic fusion P→.

Table 10. Depth-guided semantic pseudo label analysis. Seman-
tic pseudo labels evaluated on Cityscapes val (for consistency both
in 19 class setting). (a) comparing the resolutions and merging ap-
proaches. (b) decomposing depth-guided semantic segmentation
accuracy for different depth ranges. All metrics in %.

(a) Depth-guided semantic pseudo labeling components.

Method PQ SQ RQ

Low Resolution (Plow) 15.9 47.0 19.5
High Resolution (Phigh) 17.9 46.8 22.4

Mean 16.7 42.7 20.9
Depth-guided (P→) 18.1 47.3 22.6

(b) Analyzing different depth ranges.

mIoU19

Distance (in m) 0 – 10 10 – 30 >30 all

Low Resolution (Plow) 30.7 28.7 23.3 29.5
High Resolution (Phigh) 28.6 29.6 27.3 30.9

Depth-guided (P→) 29.2 29.7 27.3 31.1

Tab. 9 shows the direct quantitative evaluation of pseudo
labels generated using different motion estimation meth-
ods against the ground truth (i.e., without the panoptic seg-
mentation network). Alongside another unsupervised ap-
proach, BrightFlow [88], we include results obtained with
supervised methods, RAFT-large [71] (a supervised ana-
log of SMURF [66]) and SEA-RAFT-large [93]. We ob-
serve a rather consistent panoptic quality of the pseudo la-
bels across different motion estimation networks. As ex-
pected, the more accurate supervised optical flow methods
can improve PQ further. The slightly weaker panoptic qual-
ity with SEA-RAFT compared to RAFT might be due to
SEA-RAFT being fine-tuned on multiple diverse datasets,
whereas RAFT is fine-tuned specifically on KITTI. To con-
clude, CUPS is already effective with unsupervised flow
and depth estimation methods, while exhibiting a notable

Table 11. Instance pseudo label comparison. Using MaskCut in-
stance masks (U2Seg [55]) in our CUPS pseudo-label generation.
We compare using PQ, SQ, and RQ (in %, →) for pseudo labels
generated on Cityscapes val.

Instance pseudo-label approach PQ SQ RQ
MaskCut [78] 9.9 41.6 12.4
SF2SE3-ensembling (Ours) 18.1 47.3 22.6

margin for improvement in settings where some supervision
of optical flow is available (and permissible).

Analysis of depth-guided semantic pseudo labeling.
Following Sec. 3.1, we aim to analyze our proposed depth-
guided semantic pseudo labeling in more detail. Table 10
shows that depth guidance fuses low- and high-resolution
semantic predictions more effectively than an arithmetic
mean. We use the identical experimental setting as in
Tab. 5. We further analyze pseudo labels by splitting im-
ages into depth ranges. Low resolution is best for pixels
closer than 10 m, both predictions perform similarly be-
tween 10 – 30 m, and high resolution is superior beyond
30 m. These effects stem from DINO features trained
on fixed-resolution, object-centric images, causing reduced
representational quality at extreme scales. In short, low-
resolution predictions produce blurry outputs for distant
fine details, while high-resolution (sliding-window) predic-
tions are more accurate at large distances but introduce er-
rors near the camera. Overall, our depth-guided fusion
yields the best metric performance. We show qualitative
examples in Fig. 6.

Instance pseudo labeling analysis. Supporting the qual-
itative results presented in Fig. 2, we further analyze the
performance of our SF2SE3-ensembling approach against
MaskCut [78]. In particular, Tab. 11 presents pseudo-label
evaluation results, replacing our SF2SE3-ensembling with



Table 12. Per-class unsupervised panoptic segmentation on Cityscapes. Comparing CUPS to existing unsupervised panoptic methods,
using PQ at the class level, as well as the mean PQ (in %, →).
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Supervised [39] 96.5 72.4 85.9 16.4 30.1 48.6 48.8 67.2 86.9 34.8 86.0 65.0 60.8 79.2 58.5 77.2 59.8 54.9 59.3 62.3

DepthG [62] + CutLER [78] 80.9 1.4 55.6 3.0 0.2 0.4 0.3 0.0 72.9 5.8 61.8 6.0 0.0 17.5 0.0 0.7 0.0 0.0 0.0 16.1
U2Seg [55] 82.5 0.0 42.4 2.0 0.0 0.0 0.0 0.0 76.6 1.5 62.9 8.3 2.2 22.3 10.2 27.0 4.7 0.7 6.7 18.4

CUPS (Ours) 85.8 6.0 64.4 0.0 0.2 12.4 6.2 32.1 83.7 17.1 78.2 39.1 0.0 62.9 16.3 1.2 0.0 0.0 30.6 27.8

Table 13. CUPS self-training analysis. Decomposing the self-
training by analyzing the augmentation quality using PQ, SQ, and
RQ (in %, →) on Cityscapes val.

Training configuration PQ SQ RQ Runtime (ms)
CUPS w/o self-training 26.6 57.5 33.5 65.9
CUPS w/o self-training + TTA 27.4 57.2 34.9 413.4
CUPS (Ours) 27.8 57.4 35.2 65.2

MaskCut. All other pseudo-label generation components
are kept the same. MaskCut fails to generate high-quality
instance masks on scene-centric images, as PQ and RQ al-
most halved compared to our SF2SE3-ensembling.

C.2. Unsupervised panoptic segmentation results

Class-level PQ. Table 12 expands Tab. 1 by detailing
class-wise PQ. CUPS demonstrates substantial improve-
ments on most categories, particularly excelling on “Car”
(62.9 %), “Person” (39.1 %), “Traffic Sign” (32.1 %), and
“Sky” (78.2 %). Although CUPS has difficulties with a few
classes, e.g., “Wall”, “Fence”, and “Rider”, our baseline
DepthG [62] + CutLER [78] and U2Seg [55] also strug-
gle with segmenting these classes. The only exception is
“Bus”, on which CUPS exhibits lower PQ than U2Seg. In
the case of “Rider”, CUPS does not learn this as a sepa-
rate class, which is probably due to the motion cue used
for instance pseudo labeling, which cannot easily separate
a “Rider” from their means of transportation. Accordingly,
CUPS usually predicts person instead of rider or the entire
unit of “Bicycle” and “Rider” is predicted as “Bicycle” (cf .
Fig. 7a, second example). Nevertheless, CUPS significantly
improves the panoptic quality for the majority of classes and
narrows the gap to the supervised upper bound.

Panoptic self-training vs. test-time augmentation. Fol-
lowing up on the ablation in Tab. 7a, we provide a finer-
grained analysis of the self-training process in Tab. 13
by comparing against using the self-labeling augmenta-
tions as test-time augmentation (TTA) at inference time
directly after Stage 2 instead of the self-training. Recall
that the self-labeling augmentations involve resizing the in-
put image to three different scales and applying horizon-

Table 14. DepthG [62] + VideoCutLER [94] baseline. We com-
pare CUPS to a baseline using VideoCutLER on the Cityscapes
val dataset (all metrics in %, →).

Method PQ SQ RQ
DepthG [62] + CutLER [78] 16.1 45.4 21.1
DepthG [62] + VideoCutLER [94] 16.6 42.6 20.5
CUPS (Ours) 27.8 57.4 35.2

tal flipping, followed by aggregating the predictions. Self-
labeling augmentations, combined with confidence thresh-
olding and self-enhanced copy-paste augmentations, pro-
vide self-labels for self-training (Stage 3). Note that we re-
port TTA without thresholding in Tab. 13. While the results
in Tab. 13 show that TTA improves the panoptic quality, it
is not a practical approach due to the significantly increased
inference time. By contrast, panoptic self-training retains
the original runtime of the network and even surpasses TTA
in panoptic quality.

DepthG+VideoCutLER baseline. Since CUPS leverages
two consecutive frames to generate instance pseudo labels,
it inherently exploits temporal consistency. Consequently,
we combine VideoCutLER [94], an unsupervised method
for video instance segmentation, with DepthG as an addi-
tional baseline. We performed the experiment using five
consecutive frames as the video input to VideoCutLER. The
semantic and instance predictions of DepthG and Video-
CutLER are combined identically to the DepthG+CutLER
baseline. As shown in Tab. 14, DepthG+VideoCutLER is
slightly worse for SQ and RQ, yet better in PQ. We attribute
this to the improved temporal consistency. Our CUPS ap-
proach strongly outperforms this video baseline as well.

Overclustering analysis. Overclustering refers to setting
the number of pseudo labels significantly higher than the
number of ground-truth categories. Extending the analysis
presented in Tab. 7b, we analyze the impact of overclus-
tering along two dimensions. First, we test CUPS with an
increased number of pseudo classes. Second, we run CUPS
in the default setting, but evaluate it on the group-level class
hierarchies defined by Cityscapes. Here, the 19-class taxon-
omy is mapped down to 7 broader groups of classes.



Table 15. Unsupervised panoptic segmentation for CUPS on Cityscapes, KITTI, BDD, MUSES, Waymo, and MOTS. Comparing
CUPS to existing unsupervised panoptic methods, using PQ, SQ, and RQ (in %, →) for different numbers of pseudo classes. By default,
CUPS uses 27 pseudo classes to facilitate the comparison against both unsupervised panoptic and unsupervised semantic segmentation
approaches. We also test 40 (150 % of the default) and 54 pseudo classes (200 % of the default), showcasing the impact of overclustering.

Cityscapes KITTI BDD MUSES Waymo MOTS
Method Pseudo classes

PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ
Supervised [39] – 62.3 81.8 75.1 31.9 71.7 40.4 33.0 76.3 42.0 38.1 62.4 49.6 31.5 70.1 40.9 73.8 86.4 84.6

DepthG [62] + CutLER [78] 27 16.1 45.4 21.1 11.0 34.5 13.8 14.4 41.9 19.2 10.1 30.1 13.1 13.4 37.3 17.0 49.6 78.4 60.6
U2Seg [55] 800 + 27 18.4 55.8 22.7 20.6 52.9 25.2 15.8 57.2 19.2 20.3 45.8 26.5 19.8 50.8 23.4 50.7 79.2 64.3

CUPS (Ours) 27 (default) 27.8 57.4 35.2 25.5 58.1 32.5 19.9 60.3 25.9 24.4 48.5 33.0 26.4 60.3 33.0 67.8 86.4 76.9
CUPS (Ours) 40 30.3 64.3 37.5 28.1 63.1 35.3 21.9 57.3 28.1 28.2 52.9 35.4 27.2 62.4 33.6 74.0 88.4 82.8
CUPS (Ours) 54 30.6 65.1 37.8 28.5 60.6 36.0 21.8 62.5 27.6 22.8 45.4 29.3 27.3 65.3 32.5 78.7 89.3 87.4

Table 16. Hierarchical unsupervised panoptic segmentation on Cityscapes. Comparing CUPS to existing unsupervised panoptic
methods, using PQ (all in %, →) on different class hierarchies. All datasets are analyzed on 19 and 7 ground truth classes. The number of
ground-truth classes is indicated by the superscript of the metric.

Cityscapes KITTI BDD MUSES Waymo
Method Pseudo classes

PQ19 PQ7 PQ19 PQ7 PQ19 PQ7 PQ19 PQ7 PQ16 PQ7

Supervised [39] – 62.3 79.8 31.9 57.9 33.0 54.6 38.1 69.4 31.5 62.3

DepthG [62] + CutLER [78] 27 16.1 44.1 10.9 27.6 14.4 38.5 10.1 22.1 13.4 37.7
U2Seg [55] 800 + 27 18.4 43.5 20.6 44.4 15.8 37.3 20.3 41.4 19.8 39.6

CUPS (Ours) 27 27.8 63.9 25.4 57.4 19.9 49.3 24.4 53.5 26.4 54.7

When training CUPS with a larger number of pseudo
classes—specifically, 40 (150 % of the default number of
pseudo classes)—we observe a significant improvement in
the panoptic segmentation metrics (cf . Tab. 15). Further
increasing the number of pseudo classes to 54 (200 % of
the default number of pseudo classes) yields additional im-
provements but also exhibits a saturation trend. However,
significantly increasing the number of pseudo-classes can
impede generalization, as visible on MUSES when using
54 pseudo classes. In general, we use 27 pseudo classes for
fair comparison, as it is the lowest number of pseudo classes
that allows for a comparison to both unsupervised panoptic
and unsupervised semantic segmentation.

In Tab. 16, we evaluate CUPS on different class hier-
archies. While the main paper demonstrates substantial
gains in the standard 19-class evaluation, we show that the
gains extrapolate to the setting with a coarser grouping of
7 Cityscapes classes: “Flat” (e.g., “Road”, “Sidewalk”),
“Human” (e.g., “Person”, “Rider”), “Vehicle” (e.g., “Car”,
“Truck”), “Construction” (e.g., “Building”, “Wall”), “Ob-
ject” (e.g., “Pole”, “Traffic Sign”), “Nature” (e.g., “Vege-
tation”, “Terrain”), and “Sky”. Although the accuracy im-
provement on the coarser label set is expected, this experi-
ment empirically demonstrates that our analysis and conclu-
sions hold for different granularities of the semantic taxon-
omy. As another remark, we follow up on our observation
from Tab. 2 in the main text, where the supervised model
(trained on Cityscapes) suffers a noticeable drop in seg-
mentation performance outside the training domain. In the

Table 17. Panoptic segmentation architecture analysis. We
evaluate CUPS after stage-1 training on the Cityscapes val datasets
(all metrics in %, →).

Segmentation model PQ SQ RQ
Mask2Former [18] 25.1 57.7 31.7
Panoptic Cascade Mask R-CNN [8, 39] 26.6 57.5 33.5

coarser setting here, this observation applies to a more strik-
ing extent: CUPS nearly approaches the supervised bound
and achieves competitive panoptic quality with the super-
vised model (e.g., only 0.3 % worse on KITTI).

Analysis of panoptic segmentation architecture. Our
method does not make particular assumptions regarding
the downstream panoptic segmentation model. In prin-
ciple, CUPS can be applied to various panoptic seg-
mentation architectures without significant changes; hy-
perparameter tuning may be required for optimal accu-
racy. As a preliminary experiment, we perform stage-
1 training (i.e., only pseudo-label training) of CUPS us-
ing the Mask2Former [18] architecture and observe com-
parable panoptic segmentation accuracy relative to the
Panoptic Cascade Mask R-CNN baseline. Specifically,
Mask2Former achieves slightly inferior RQ but marginally
superior SQ, resulting in an overall lower PQ. We attribute
this weaker recognition performance to architectural differ-
ences: Mask2Former jointly predicts semantic and instance
labels per mask, whereas Panoptic Mask R-CNN separates
these tasks into two branches, facilitating a more effective
application of the drop loss. In particular, Mask2Former



Figure 7. Qualitative unsupervised panoptic segmentation examples across all datasets after Hungarian matching. We compare CUPS
(Ours) to the DepthG+CutLER baseline and U2Seg. CUPS produces more consistent and accurate panoptic segmentations.
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(a) Cityscapes — Qualitative unsupervised panoptic segmentation examples.

Image Ground Truth Baseline U2Seg [55] CUPS (Ours)

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

(b) KITTI — Qualitative unsupervised panoptic segmentation examples.
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(c) BDD — Qualitative unsupervised panoptic segmentation examples.
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(d) MUSES — Qualitative unsupervised panoptic segmentation examples.
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(e) Waymo — Qualitative unsupervised panoptic segmentation examples.

Image Ground Truth Baseline U2Seg [55] CUPS (Ours)

Background Person

(f) MOTS — Qualitative unsupervised panoptic segmentation examples.
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Figure 8. Qualitative OOD examples for CUPS on ImageNet val. Applying the pseudo class to ground-truth matching of CUPS from
Cityscapes for visualization purposes.

applies the drop loss to both “thing” and “stuff” predic-
tions, while Panoptic Cascade Mask R-CNN only drops
“thing” masks. Our findings indicate that prior work [79]
has only partially addressed the application of the drop loss
to Mask2Former, thus limiting the effectiveness of the drop
loss. While initial results appear promising, further investi-
gation is necessary.

D. Qualitative Results
We show a qualitative comparison of CUPS to the
DepthG+CutLER baseline and U2Seg [55] across all
datasets in Fig. 7.

On Cityscapes (cf . Fig. 7a), we observe a significant
qualitative difference to U2Seg. We attribute this improve-
ment to the quality of our pseudo labels, which enable pre-
dicting small instances in the background. Despite some
errors, such as the “Fence” being incorrectly predicted in
small regions of the building in the upper image, CUPS
identifies substantially more classes and provides more pre-
cise instance segmentation compared to both the baseline
and U2Seg. On KITTI (cf . Fig. 7b), we observe a similar
trend. CUPS detects and segments more objects, offering
a finer-grained panoptic segmentation compared to U2Seg,
which tends to merge overlapping objects. For instance, in
the upper example, the parked cars are incorrectly merged
into a single mask by U2Seg, while CUPS successfully sep-
arates them. On the BDD dataset (cf . Fig. 7c), the impact
of the domain shift is evident across all methods. CUPS
exhibits minor artifacts, such as predictions related to parts
of the ego vehicle or dirt on the windshield. Additionally,
signs on buildings are occasionally misclassified as traffic
signs. In contrast, U2Seg often produces large, erroneous
masks that span across the image, resembling the Mask-
Cut artifacts in Fig. 2. Similarly, for MUSES and Waymo
(cf . Figs. 7d and 7e), all methods are somewhat affected by
the domain shift and challenging viewing conditions. How-

ever, CUPS consistently detects instances compared to both
other approaches. For the upper Waymo example, one can
observe an occasional artifact for CUPS. For example, it
incorrectly classifies the shadows forming underneath the
vehicles in sunny weather conditions. This is a result of the
instance cue being derived from unsupervised flow, which
can introduce artifacts due to the apparent motion. MOTS
(cf . Fig. 7f) is challenging for all approaches. Nonethe-
less, CUPS produces accurate predictions with fewer arti-
facts compared to both the baseline and U2Seg, showcasing
its robustness even in complex scenarios.

Overall, CUPS predicts less noisy and more accurate se-
mantics, aligning well with the image while predicting sig-
nificantly more and better instance masks. This observation
is in line with our quantitative experiments (cf . Sec. 4).

Additionally, we run CUPS and U2Seg on a demo (val-
idation) video sequence from Cityscapes (cf . https://
visinf.github.io/cups). For this analysis, we process
each individual frame independently using the respective
method and concatenate the outputs into a video, as both
methods are designed for per-frame processing. On this se-
quence, CUPS is qualitatively superior to U2Seg.

Results on object-centric images. To further evaluate
the generalization capabilities of our approach, we tested
CUPS on randomly selected out-of-domain images, sam-
pled from ImageNet [91]. Qualitative results, shown in
Fig. 8, demonstrate that CUPS effectively generalizes to
novel domains, viewpoints, and object categories. We find
that objects such as tractors, forklifts, and airplanes are clas-
sified as cars, which is reasonable given the classes avail-
able in Cityscapes. Additionally, objects and surroundings
in diverse scenarios are accurately segmented. For instance,
despite never encountering a racing car on a mountain road
during training, CUPS provides contextually appropriate
and coherent segmentation, further highlighting the robust-
ness of our method.

https://visinf.github.io/cups
https://visinf.github.io/cups


E. Limitations and Future Work
CUPS utilizes stereo videos to extract depth cues for pseudo
labeling of complex scenes. Although stereo videos are
widely available and are inexpensive to record, overcoming
the need for the stereo setup could further broaden the ap-
plication spectrum. Future work could explore replacing the
stereo input with a state-of-the-art self-supervised monocu-
lar depth estimation method, such as ProDepth [95].

The evaluation of CUPS has been also largely con-
strained to driving datasets. This is due to the wide avail-
ability of panoptic annotation specifically for this domain.
Nevertheless, we believe that CUPS has the potential for
applications beyond traffic scenarios, as it relies on domain-
agnostic cues, such as depth and motion as well as general-
purpose visual representations.

U2Seg and CUPS approach the task of unsupervised
panoptic segmentation from two distinct perspectives:
object-centric and scene-centric training data. Combining
the strengths of both methods could open a promising av-
enue for future research, offering a more comprehensive
solution to the challenges of unsupervised panoptic scene
understanding.

An additional direction for future work could scale such
an approach by exploring more advanced panoptic segmen-
tation networks, such as Mask2Former [18], and increasing
the amount of training data.
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