Parameter Efficient Mamba Tuning
via Projector-targeted Diagonal-centric Linear Transformation

Supplementary Material

Algorithm S1 ProDial: Projector-targeted Diagonal-
centric Linear Transformation

Require: Pretrained Projector weight W, Downstream
task data X, Learning rate n, Hyperparameter ry, r for
ProDialL.

Ensure: Fine-tuned Projector weight W’

1: Set the hyperparameter 7, 7 and learning rates n
2: Initialize 7, small block matrices zi,...,z,, €
R(din/7o)x(din/7v) with identity matrix

: Construct D, = diag(z1, ..., Z,)

: Construct Dy, = [I — relu(I* D,)] + (1 —1) % D,

: Initialize scaling factor s with one vector

. Initialize low-rank matrices A, with random noise

N(0,0?) and B, with zeros

N L kA~ W

7: while not converged do
8: Sample a mini-batch Xpycn from the downstream
task data
9: Compute the intermediate transformation: W’/ =
sWDy + BcA.
10: Perform forward pass with W’ on Xpaen
11: Compute loss £(W’) based on task objective

12: Backpropagate gradients Vp, £,V 4 L,V L

13: Update Dy, <~ Dy, —n - Vp, L

14: Update A, < A —n-Va L

15: Update B, < B. —n-Vp L

16: end while

17: Compute final fine-tuned weight: W’ = sW Dy + B A,
18: return W’

A. Algorithms of ProDialL

The ProDial. (Projector-targeted Diagonal-centric Linear
Transformation) is a parameter-efficient fine-tuning (PEFT)
method specifically designed for Mamba architecture’s Pro-
jectors. It efficiently and effectively adapts pretrained Pro-
jector weights W to downstream tasks via a diagonal-centric
linear transformation, significantly minimizing the number
of learnable parameters. Algorithm S1 presents the full de-
tailed ProDiaL algorithm.

The algorithm begins with the initialization of key com-
ponents and hyperparameters. Firstly, small block matrices
x1,..., Ty, are initialized as identity matrices and used to
construct the auxiliary block-diagonal transformation ma-
trix D,. The hyperparameter 7, controls the size and the
number of these small block matrices. As 7} increases, the
sizes of each small block decreases, and the number of small
blocks increases, as illustrated in Fig. S1. When r; equals

din/Tp

Figure S1. Block-Diagonal Matrix Design for ProDiaL. The dia-
gram illustrates the block-diagonal structure of the transformation
matrix Dy, with 73, controlling the size and number of small block
matrices (1, ..., Tr, ). As 1 increases, the block size decreases.

the input dimension d;,,, the small block matrices form a
perfectly diagonal matrix. With these small block matri-
ces, the block-diagonal matrix D, is constructed. To facil-
itate faster convergence, ProDiaL trains the difference be-
tween identity matrix and diagonal entries. Then, the final
diagonal-centric linear transformation matrix Dy, is derived
from D,. Additionally, a scaling factor s is initialized as a
vector of ones, and low-rank matrices A, and B, are initial-
ized with random noise and zeros, respectively, to address
off-diagonal matrices.

After the initialization and settings, the fine-tuning pro-
cess iteratively refines these components using mini-batches
of downstream task data. For each mini-batch, the algorithm
computes the updated Projector weights W’ as a combina-
tion of the scaled diagonal transformation sW D, and the
low-rank adjustment for off-diagonal matrices B, A.. A for-
ward pass is performed using W', followed by the com-
putation of the task-specific loss L(W'). Next, the gradi-
ents obtained from L(W') are backpropagated to update
Dy, A.,andB, via gradient descent. This process is re-
peated until convergence, ensuring that the learned trans-
formations effectively adapt W to the downstream task.

Upon convergence, the final fine-tuned weights W’ are
returned as the output of this algorithm. By employing a
block-diagonal structure in D} and low-rank matrices for
A, and B, ProDial achieves strong downstream task per-
formance with parameter efficiency and flexibility. This ap-
proach is particularly advantageous for large-scale Mamba-
based models in both vision and language domains, where
full fine-tuning is computationally challenging.



B. Trade-off between Performance and Num-
ber of Parameters by Controlling 7, and 7,

Our ProDial. method offers superior flexibility in determin-
ing learnable parameters by controlling the size of small
block matrices (1, ..., Z, ) in the block-diagonal matrix D,
using 7 and the low-rank value for LoRA using r.. To ex-
amine how performance and the number of parameters vary
depending on 7, and r., we conducted experiments using
the Vim-tiny model [16] on the Caltech [9] and Flowers
datasets [11]. The hyperparameter 7,; controls the small
block size of the Input Projectors, while 72 controls the
small block size of the Output Projectors.

Table S1 shows the performance and the number of pa-
rameters for different values of r;, and r.. Firstly, we con-
firm that varying the small block sizes (the number of pa-
rameters) does not degrade performance. In other words,
this demonstrates that it is possible to flexibly adjust the
number of parameters by tuning 7, and ., enabling a trade-
off between performance and computational cost (parame-
ter usage). Interestingly, even replacing the block-diagonal
matrix with a diagonal matrix—represented by the case
(rp1,mp2) = (192,384)—yields comparable performance
with the smallest number of parameters among the same 7.
values. Secondly, we observe that the optimal number of pa-
rameters for the best performance depends on the dataset.
For the Caltech dataset, the highest accuracy is achieved
with a relatively small number of parameters, whereas for
the Flowers dataset, the best accuracy requires the largest
number of parameters. This suggests that simpler datasets
(those with higher baseline accuracy) can achieve high
performance with fewer parameters, while more complex
datasets (those with lower baseline accuracy) need a larger
parameters for high performance.

C. Additional Experiments

C.1. Evaluation on additional datasets

To further evaluate the effectiveness of our proposed Pro-
DialL. method, we conducted additional experiments on
SIQA [13] and OBQA [10] datasets. These datasets were
selected to assess the wider reasoning capabilities of Pro-
Dial. across diverse tasks and domains. As shown in
Tab. S2, our ProDial. method consistently outperforms both
LoRA and DoRA, demonstrating superior performance in
line with the results observed on other datasets in the main
manuscript. This consistent improvement underscores the
robustness of ProDialL and its ability to effectively adapt
across various data distributions and task complexities.

C.2. Evaluation on Mamba2 architecture

To further assess the effectiveness of our ProDial. method
within Mamba 2 architecture [2], we conducted addi-
tional experiments on LLMs based on the Mamba2-130M.

rp1 Tee re Params Caltech (%) Flowers (%)
192 384 16 0.65M 96.24 86.96
32 32 16 0.77M 95.93 89.12
16 32 16 0.80M 95.86 89.22
8 32 16 0.85M 96.01 89.51
32 16 16 0.88M 95.63 87.75
16 16 16 091M 95.63 89.80
8 16 16 0.96M 96.24 89.90
32 8 16 1.10M 95.63 87.75
16 8 16 1.13M 95.47 90.10
8 8 16 1.19M 95.70 90.29
192 384 8 0.35M 95.70 88.63
32 32 8 048M 96.09 87.94
16 32 8 0.50M 96.01 88.92
8 32 8 0.56M 96.62 89.12
32 16 8 0.59M 96.24 88.33
16 16 8 0.6IM 96.32 89.22
8 16 8 0.67TM 96.09 89.61
32 8 8 081M 95.70 89.80
16 8 8 0.84M 96.09 89.02
8 8 8 0.89M 95.93 90.10

Table S1. Performance Across Varying Hyperparameters. The
table demonstrates the impact of varying block sizes (741, rp2) and
low-rank value (r¢) on the number of parameters and performance
for the Caltech and Flowers datasets. Smaller parameter counts
perform well on simpler datasets (e.g., Caltech), while larger pa-
rameter counts yield better performance on more complex datasets
(e.g., Flowers).

Datasets SIQA OBQA
'g LoRA 34.14 (2.36M) | 38.00 (1.18M)
(5'3 DoRA 34.34 (2.45M) | 38.20 (1.27M)
2 | ProDial. | 34.80 (2.51M) | 39.60 (1.18M)
= | LoRA 34.80 (1.48M) | 36.40 (0.74M)
‘E DoRA 34.39 (1.55M) | 36.80 (0.81M)
~ | ProDiaL | 35.47 (1.03M) | 37.80 (0.89M)
'z | LoRA 33.16 (0.89M) | 33.80 (0.44M)
°'é DoRA 33.27 (0.90M) | 34.20 (0.46M)
© | ProDiaL | 33.93 (0.90M) | 35.00 (0.46M)

Table S2. Performance (%) on SIQA and OBQA Datasets.

Mamba 2 is an advanced model that addresses the lim-
itations of Mamba 1 by incorporating selective state up-
dates, efficient parallelization, and a lightweight attention
mechanism, ensuring efficient and strong performance even
with long sequences. Unlike Mamba 1, where Mamba 2
employs a Hybrid Attention Mechanism, the performance
of ProDiaL is not fully explored due to its structural dif-
ferences. As presented in Tab. S3, our ProDial. method
consistently achieves superior accuracy while maintain-
ing a comparable or smaller number of parameters than
other approaches. These results demonstrate that ProDialL



Method HellaSwag Winogrande ARC-E ARC-C Avg
Full-FT 38.23 (130.00M)  53.12 (130.00M)  53.54 (130.00M) 28.84 (130.00M)  43.43
_ FT 38.76 (90.1M) 53.12 (90.1M) 50.67 (90.1M) 28.84 (90.1M) 42.84
E LoRA 38.50 2.47M) 53.35 (2.47™M) 52.36 (2.47M) 30.20 2.47M) 43.60
5; DoRA 35.24 2.57M) 52.01 2.57™) 47.18 (2.57M) 24.15 (2.57M) 39.65
a ProDialL 38.57 (2.44m) 53.83 (2.00Mm) 53.03 (2.33m) 30.46 (2.22M) 43.97
FT 39.89 (61.8M) 53.35 (61.8M) 51.56 (61.8M) 27.22 (61.8M) 43.01
‘T LoRA 37.32 (1.58M) 53.43 (1.58M) 52.02 (1.58M) 30.03 (1.58M) 43.20
E DoRA 35.24 (1.66M) 52.01 (1.66M) 47.18 (1.66M) 24.15 (1.66M) 39.65
ProDialL 37.91 (0.98M) 53.75 (0.89M) 53.03 (0.98M) 30.29 (0.93M) 43.75
FT 40.62 (28.3M) 53.43 (28.3M) 54.08(28.3M) 29.10 (28.3M) 44 .31
E LoRA 37.44 (0.839M) 53.28 (0.89M) 52.65 (0.89M) 28.50 (0.89M) 42.97
g DoRA 37.44 (0.90M) 53.59 (0.90m) 52.69 (0.90M) 28.92 (0.90M) 43.16
ProDial 37.86 (0.90M) 53.51 (0.50M) 53.45 (0.68M) 30.29 (0.90m) 43.78

Table S3. Comparison of accuracy(%) as a downstream task performance of Mamba2 architecture based LLM across various
datasets. Consistent with Mambal architecture, ProDialL. methods (in Both-Proj, In-Proj, and Out-Proj) achieve superior accuracy with

smaller or similar number of parameter compared to other methods.

effectively enhances downstream task performance in the
Mamba 2 architecture, highlighting its strong generalization
capability. Details of the hyperparameter configurations, in-
cluding the block size settings for ProDial, are available
in Tab. S9.

D. Experiment Details

D.1. Models & Datasets

First, Mamba LLM [6] is the first model to implement
the Mamba architecture, achieving faster inference than
transformer-based LLMs as input token sizes increase. For
Mamba LLM, we adapt the model pretrained on the PILE
dataset [5] to other reasoning task datasets: HellaSwag [15],
Winogrande [12], ARC-Easy [1], and ARC-Challenge [1].
The HellaSwag dataset is a challenging benchmark for com-
monsense reasoning that requires contextual understanding
to predict the most plausible continuation of a given sce-
nario from multiple choices. The Winogrande dataset is a
large-scale benchmark for commonsense reasoning, con-
sisting of sentence pairs with subtle differences, requiring
the model to determine the best sentence completion by re-
solving nuanced context clues and pronoun references. The
ARC-Easy dataset, a subset of the AI2 Reasoning Chal-
lenge (ARC), contains straightforward science questions at
elementary and middle school levels, designed to assess
a model’s basic factual and scientific reasoning abilities.
The ARC-Challenge dataset, also part of the AI2 Reasoning

Challenge, includes complex science questions that require
advanced reasoning and domain knowledge.

Next, similar that transformer architecture was origi-
nally designed for language models but being used for vi-
sion tasks [4], the Mamba architecture, initially designed
for language models, also has been adapted into Vision
Mamba [16] by sequentially processing image tokens using
both forward and backward State Space Models (SSMs) [7].
For the Vision Mamba model, we adapt the model pre-
trained on the ImageNet dataset [3] to other classifica-
tion datasets, including Stanford Cars [8], Caltech [9], and
Flowers [11]. The Stanford Cars dataset includes images of
196 car models spanning various makes and years, offer-
ing detailed visual information to support the development
of models capable of distinguishing between different car
types and designs. The Caltech101 dataset comprises im-
ages from 101 object categories with diverse shapes and
appearances, providing a foundation for developing models
capable of recognizing real-world objects. The Flowers102
dataset contains images of 102 different flower species, cap-
turing a range of visual variations to help models learn fine-
grained distinctions among flower types.

D.2. Universal Effectiveness of Experiments

All experiments and conclusions, including the effective-
ness of fine-tuning only the projectors and our proposed
ProDial. approach, are universally applicable. This uni-
versal applicability has been empirically validated through



ARC-E

StanfordCars

Flowers

Datasets HellaSwag
g LoRA 38.5410.18 (2.36M)
J‘é DoRA 38.37i0,22 (238M)
2 | ProDial | 38.6310.25 (2.42M)

54.0010.11 (2.36M)
54.1240.00 (2.45M)
55.09-0.26 (2.38M)

85.3210.25 (0.63M)
85.3440.16 (0.69M)
85.48.0.15 (0.67M)

86.88+0.46 (0.61M)
87.14+0.50 (0.65M)
87.91,¢.24 (0.65M)

Table S4. Multiple Runs for Both Projectors. Average performance across three runs with random seeds 30, 42, and 100.

Learning rate | le-5 Se-5 le-4 Se-4 le-3
LoRA 36.15 37.86 3833 38.31 3747
DoRA 36.15 37.66 3813 37.33 36.09

ProDiaLL 36.17 37.8 3892 37.64 36.46

Table S5. Optimal Learning Rates for LoRA, DoRA, and Pro-
DiaL. This experiment is conducted on HellaSwag dataset.

multiple trials conducted under various random seeds. As
demonstrated in Tab. S4, the performance remains consis-
tently robust across various random seeds, reinforcing the
reliability of our method. This consistency highlights the
stability of our approach, suggesting that it is not highly de-
pendent on specific initialization conditions or random fac-
tors.

D.3. Optimal Learning Rates Selection for Fair
Comparison

To ensure a fair comparison between LoRA, DoRA, and our
proposed ProDialL method, we conducted a comprehensive
search to identify optimal learning rates for each approach.
As shown in Tab. S5, LoRA, DoRA, and ProDial achieve
their highest performance at the same learning rate. We be-
lieve this convergence is due to the inherent design similari-
ties between the methods, as both DoRA and ProDiaL build
upon the LoRA framework. Consequently, the reported re-
sults are based on these optimized settings to ensure that
each method performs at its best.

D.4. Training and Evaluation

Our experiments in main manuscript are mainly conducted
on Vim [16] based on Mamba 2 architecture [2] and Mamba
LLM [6] based on Mamba 1 architecture. Below, we detail
the experimental settings for each dataset.

D.4.1. Mamba LLM Experiments

In the experiments presented in Table 3 of the main
manuscript, we use the Mamba-130M, configured with 24
layers and a maximum sequence length of 512. The dimen-
sions for the input projectors are set as follows: input pro-
jectors have d;,, = 768 and d,,; = 3072, while output
projectors are configured with d;;, = 1536 and d,,,,; = 768.

For the results in Table 4 of the main manuscript, we
employ the larger Mamba-370M and Mamba-1.4B mod-
els, both configured with 48 layers and a maximum se-
quence length of 512. Mamba-370M uses input projectors

with d;;, = 1024 and d,,; = 4096 and output projectors
with d;,, = 2048 and d,,; = 1024. For Mamba-1.4B, the
input projectors have d;, = 2048 and d,,; = 8192, while
the output projectors have d;,, = 4096 and d,,,,; = 2048.

For training Mamba LLM models, we use the AdamW
optimizer with a batch size of 4 and a constant learning rate
scheduler. Additional hyperparameters including ProDial’’s
settings, which control the number of learnable parameters,
are provided in Tabs. S6 and S7.

For evaluation, we use Language Model Evaluation Har-
ness framework', following [6]>.

D.4.2. Vision Mamba Experiments

In the experiments in Table 3 of the main manuscript, we
use the Vim-tiny, which has 24 layers, a patch size of 16,
and an input image size of 224. The input projectors are set
with d;,, = 192 and d,,,,;+ = 768, and output projectors have
din = 384 and d,yy = 192. We train the Vim-tiny model
for 300 epochs with a batch size of 128, using the AdamW
optimizer with a learning rate of 5e — 4 and weight decay
of 0.1. A cosine learning rate scheduler with 5 warm-up
epochs starting from 1le — 6 is applied. Hyperparameters for
ProDial., determining the number of learnable parameters,
are detailed in Tab. S8.

In Table 4 of the main manuscript, we use the Vim-small,
which also has 24 layers, a patch size of 16, and an input
image size of 224. Whereas, input projectors are configured
with d;,, = 384 and d,,; = 1536, while output projectors
have d;,, = 768 and d,,; = 384. Training for Vim-small
spans 300 epochs with a batch size of 64, using the AdamW
optimizer at a learning rate of 1le — 3, weight decay of 0.05,
and dropout rate of 0.05. The cosine learning rate scheduler
is also used with a 5-epoch warm-up starting from le — 6.
For the Caltech dataset, ProDialL hyperparameters are set as
follows: 151 = 192, rpo = 384, and r. = 16.

D.5. Details for Each Analysis

In this section, we describe the detailed settings for each
analysis experiment in the tables and figures of the main
manuscript. The training and evaluation details for all mod-
els and datasets follow the guidelines provided in Sec-
tion D.4

Table 1 and Table 2 in main manuscript present the ab-
lation studies of Vision Mamba and Mamba LLM, respec-

Uhttps://github.com/EleutherAl/lm-evaluation-harness
Zhttps://github.com/state-spaces/mamba



Method Settings HellaSwag  Winogrande ARC-E  ARC-C
Learning Rate le-4 Se-6 Se-6 le-5
Default | Total Training Iter (M) 300K 100K 100K 100K
Sampling Period (N) 10K 5K 5K 5K
Both-Proj (141, 7p2) (768, 1536) (768, 1536) (64, 64) (64, 64)
. In-Proj rp; 768 768 32 32
ProDial. Out-Proj 742 1536 1536 128 128
Off-diagonal r, 16 8 8 8
Low Rank r 16 8 16 16
LoRA Scaling factor « 16 8 16 16
Low Rank r 16 8 16 16
DoRA Scaling factor o 16 8 16 16

Table S6. Fine-Tuning Settings for Mamba-130M. This table summarizes the hyperparameters and configurations used for training and
fine-tuning the Mamba-130M model across reasoning tasks (HellaSwag, Winogrande, ARC-E, and ARC-C). The Default settings include
learning rates, total training iterations (in millions), and checkpoint sampling periods (V). For ProDial., specific configurations for the
block-diagonal matrix (71, 7p2) in input and output projectors, as well as the low-rank value (r¢) for off-diagonal matrices, are provided.
Baseline methods (LoRA and DoRA) use a consistent low-rank value (r) and scaling factor («) for comparison.

Method Settings Mamba-370M Mamba-1.4B
Learning Rate Se-7 Se-7
Default | Total Training Iter (M) 30K 30K
Sampling Period (N) 1K 1K
Both-Proj (741, 742) (1024, 2048) (2048, 4096)
. In-Proj 1 1024 2048
Probial Out-Proj 7 2048 4096
Off-diagonal r, 16 64
Low Rank r 16 64
LoRA Scaling factor « 16 64
Low Rank r 16 64
DoRA Scaling factor o 16 64

Table S7. Fine-Tuning Settings for Larger Mamba Models. This table outlines the hyperparameters and configurations used for training
and fine-tuning Mamba-370M and Mamba-1.4B on the Winogrande dataset.

Settings | StanfordCars Caltech  Flowers

(rv1, To2) (192,384) (192,384)  (16,16)
. Tb1 192 192 8
ProDial | 384 384 32
Te 16 16 8
r 16 16 16
LoRA o 16 16 16
r 16 16 16
DoRA o 16 16 16

Table S8. Hyperparameters for Fine-Tuning Vim-tiny on Clas-
sification Tasks. The table presents the hyperparameters used for
fine-tuning Vim-tiny on the StanfordCars, Caltech, and Flowers
datasets. rp1 and rp2 represent the low ranks for block-diagonal
matrices in input and output projectors, respectively. For LoRA
and DoRA methods, r indicates the low rank, while « denotes the
scaling factor.

tively. For these experiments, the components of the Vim-
tiny model were trained on the SUN dataset [14], and the
components of the Mamba-130M model were trained on
the HellaSwag dataset. The results from both tables consis-
tently show that the Projectors contribute more significantly
to capturing knowledge for downstream tasks compared to
the State-Space Model (SSM).

Figure 2 in main manuscript visualizes the importance
of training diagonal entries in the linear transformation ma-
trix 7" for learning an effective linear transformation. This
analysis was conducted using the Vim-tiny model trained
on the Caltech dataset. The visualization illustrates the in-
put projector at the fourth layer, which was randomly se-
lected. Similar characteristics were observed in other layers
and the output projectors, reinforcing the generalizability of
this observation.

Figure 4 in main manuscript empirically demonstrates
the effectiveness of training diagonal entries in the linear



Method Settings HellaSwag  Winogrande = ARC-E ARC-C
Learning Rate le-4 le-6 le-5 5e-6
Default | Total Training Iter (M) 200K 30K 100K 100K
Sampling Period (N) 10K 1K 5K 5K
Both-Proj (741, 7p2) (64, 64) (64, 128) (128,64) (32, 128)
. In-Proj rp; 32 768 128 256
ProDial. Out-Proj s 128 1536 256 128
Off-diagonal r, 8 8 8 8
Low Rank r 16 16 16 16
LoRA Scaling factor o 16 16 16 16
Low Rank r 16 16 16 16
DoRA Scaling factor a 16 16 16 16

Table S9. Fine-Tuning Settings for Mamba2-130M. This table details the hyperparameters and configurations used for fine-tuning
Mamba2-130M on reasoning tasks, including learning rates, training steps, checkpoint intervals, and settings for ProDial., LoRA, and

DoRA methods.

transformation matrix 7. This experiment, conducted on the
Vim-tiny model with the Caltech dataset, explores four dis-
tinct configurations for fine-tuning 7". In the first configu-
ration, the entire 7" matrix is directly fine-tuned, initialized
as an identity matrix to ensure it starts as a standard lin-
ear transformation. The second configuration fine-tunes a
block-diagonal matrix, where each block is initialized as
an identity matrix. In the third configuration, only a diag-
onal vector was fine-tuned, initialized as a vector of ones.
The fourth configuration involved fine-tuning only the off-
diagonal matrix, starting from a zero matrix with the diago-
nal entries masked.

Table 5 in main manuscript investigates whether the di-
agonal entries in the linear transformation matrix 7" are ef-
fective only for Projectors or across all linear layers in the
Mamba architecture. This experiment was also conducted
using the Vim-tiny model on the Caltech dataset.

Table 6 in main manuscript explores the role of non-
attention modules in the Transformer architecture. For this
analysis, the Vision Transformer (ViT-B/16) model pre-
trained on ImageNet was fine-tuned on the CIFAR-100
dataset. The model was trained using the Adam optimizer
with a batch size of 128 and a learning rate of 0.001 for 5000
iterations. A cosine learning rate scheduler with a warmup
period of 500 steps was used. For LoRA adaptation, a low
rank of 8 was applied to both the Attention and FFN mod-
ules.

Table 7 in main manuscript provides an ablation studies
of ProDial. components, including Block-diagonal matrix
Dy, Off-diagonal matrix €, and scaling factor s. This exper-
iment was conducted on the Vim-tiny model fine-tuned on
the Caltech dataset.
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