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7. Method Details

Clarifications Event Representation Events are quasi-
continuous. Equation (2) defines the task of tracking any
point from events as determining the time-discrete point ob-
servations from the continuous input events. In the first step
events are converted to event representations, where each
representation has a constant number of events Ne. Sec-
tion 8 shows exemplary the connection between events and
discrete tracking timesteps τ , resulting in a constant track-
ing frequency, despite a varying event rate. Please note that
the tracking frequency is adjustable at test time. In prac-
tice, we mostly set τt to the ground truth timesteps of an
evaluation set.
Description of Event Stacks As frame representation, we
use a variation of Mixed-Density event stacks [46] and build
T input representations It. Let Et = {ei|ti ≤ τt} be
the Ne events directly preceding timestep τt. We construct
a multi-channel representation by hierarchically binning
these events into C = 10 channels, denoted as {hc}Cc=1,
where each channel hc is a spatial histogram of dimensions
H × W . The c-th channel aggregates nc = ⌊Ne/2

c−1⌋
events using bilinear interpolation, such that:
• h1 incorporates all Ns events
• hc processes Ns/2

c−1 events for c > 1

where each channel contains the events closest to ti.
Hyperparameters For a better overview Tab. 6 provides an
overview of all hyperparameters of our method introduced
in Sec. 3.
Event Generation Model The linear event generation
model has been discussed previously (e.g. [17]. To make
the paper self-contained, here is a brief introduction. It
approximates how events are triggered in event cameras.
Starting from the condition that events occur when bright-
ness change reaches a threshold (∆L(xk, tk) = pk C),
this model uses Taylor’s expansion for small time inter-
vals to relate events to the temporal derivative of brightness
(∆Lt(xk, tk) ≈ pk C

∆tk
). Under constant illumination, this

can be further linearized to ∆L ≈ −∇L · v∆t, showing
that events are fundamentally triggered by brightness gra-
dients (edges) moving across the image plane. The rate of
event generation depends on the relationship between edge
orientation and motion direction, with perpendicular motion
producing the highest event rate.
Events under Time Inversion. According to the linearized
event generation model (LEGM) [17] an event ek is gener-
ated when the dot product between per-pixel optical flow v
and the image gradient ∇L exceeds the threshold C:

ek ∈ Et ⇐⇒ −pk∇L(xk, τk) · v(xk, τk)δτk ≈ C (8)

where δτk is the time since the last event at the same pixel.

𝜏
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Tracking timesteps

Figure 9. Asynchronous events are converted into temporally
equidistant frame representations at τt, each created from the last
Ne events.

Parameter Variable Value

window length w 8
feature size d 128
bin number B 10
stride Ts 4
refinement steps (train) M 4
refinement steps (eval) M 6
feature scales S 4

Table 6. Hyperparameters. An overview of variables that were
introduced in Sec. 3 and their specific values.

Next, consider how the events Et change when the
motion changes, for example, induced by a time inver-
sion τ̃

.
= 2τ̄t − τ , with τ̄t = τt+τt−∆τt

2 is the inter-
val midpoint. Due to the chain rule, the optical flow be-
comes ṽ(x, τ) = −v(x, 2τ̄t− τ), and the gradient becomes
∇L̃(x, τ) = ∇L(x, 2τ̄t − τ). Under this change of vari-
ables, we describe what the new events Ẽt look like. Specif-
ically, if ek ∈ Et, then ẽk = (xk, 2τ̄t−τk,−pk) ∈ Ẽt since

− p̃k∇L̃(x̃k, τ̃k) · ṽ(x̃k, τ̃k)δτ̃k (9)

= −pk∇L(xk, τk) · v(xk, τk)δτk
(8)
≈ C.

The equality is satisfied assuming the time since the last
event is similar under time inversion (δτ̃k ≈ δτk). Simple
inspection shows that the events Et and Ẽt are different,
and, as a result, corresponding descriptors Ds

t and D̃w−s+1
t

are different (note w − s+ 1 is the inverted index).

8. Data and Evaluation Details
8.1. Ground truth generation for the E2D2 Fidget

Spinner Sequence

The ground truth tracks used for evaluation on the E2D2 fid-
get spinner sequence were calculated from simple geomet-
ric knowledge. The midpoint of the spinner is constant. The
wheel itself is fully facing the camera, describing perfect
circular motions. Therefore, we can calculate the positions
of each point on the fidget spinner with an estimate of the
angular velocity of the wheel. The angular velocity is esti-
mated as follows: First, we create event histograms with a
fixed number of 20,000 events at 1000 Hz (simply counting
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Figure 10. Ground truth for E2D2 fidget spinner sequence. (a)
Example of a 2D event histogram that is built at 1000Hz. (b) time
series of L2 norms wrt. to the first frame. Red star points are local
minima, where the spinner completed another third revolution.

positive and negative events within the event batch), as seen
in Figure 10 (a). Then we calculate the 1D time series of the
L2-norm between each frame and the initial frame, visual-
ized in Fig. 10 (b). The local minima are the times when the
wheel completed a third revolution (due to the three-lobed
shape of the fidget spinner). We assume the angular velocity
to be constant between two third-revolution-timestamps. As
shown in Fig. 10 (b), the spinner gets progressively faster,
increasing tracking difficulty.

8.2. Examples of the EventKubric Dataset

Figure 11 visualizes the data generation explained in Sec. 4.
Figure 13 shows a few examples of the EventKubric dataset.
The full scene knowledge is available as annotations, which
can be useful for tasks beyond point tracking.

9. Further Experiments and Detailed Results
9.1. Task 2: Feature Tracking - Extended Results

Table 8 provides full results for the EDS & EC dataset. Fig-
ure 15 shows additional comparisons.

9.2. Results EVIMO2

Figure 14 shows prediction results for EVIMO2

9.3. Feature Independence Experiment.

We examine the effect of our contrastive loss on the learned
features with an experiment shown in Fig. 12. We track
the same 3 points on a 2D pattern with two orthogonal
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Figure 11. Data Generation Pipeline. The PBR tool Kubric ren-
ders 2s RGB videos, which are adaptively upsampled to generate
events from it. The dense ground truth provided by Kubric is used
for point track generation.
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Figure 12. Setup of the motion robustness experiment. The same
pattern is recorded two times in perpendicular directions at the
same key points of the pattern. The same points under different
motion directions should ideally have similar descriptors.

Method Cintra ↑ Cinter ↑ ∆

Frames 0.836 0.804 0.032
Events without FA-loss 0.776 0.399 0.377
Events with FA-loss 0.954 0.887 0.067

Table 7. Measuring feature independence. The intra- and inter-
cluster cosine similarity of tracking the same points in different
sequences.

camera motions and analyze the corresponding descriptors
dit,dir at the end of the window with point index i and
dir ∈ {horizontal, vertical}. We then measure the co-
sine similarity between descriptors at the trajectory start,
and descriptors along the same trajectory with Cintra =∑

t,dir,i cossim(d
i
0,dir, d

i
t,dir), called intra-cluster, and along

trajectories with different motions directions e.g. Cinter =∑
t,i cossim(d

i
0,horizontal, d

i
t,vertical), called inter-cluster. Ta-

ble 7 shows results for three methods: our model, an ab-
lation model trained without our loss, and a frame-based
baseline. While the model in the motion-independent frame
domain has very similar inter- and intra-cluster similarities,
the ablation model shows a similarity gap of 0.38 between
Cintra and Cinter. In comparison, this gap is closed, when
training with our contrastive loss.



Average Peanuts Light Rocket Earth* Ziggy Arena Peanuts Running

Method Frames FA↑ EA↑ FA↑ EA↑ FA↑ EA↑ FA↑ EA↑ FA↑ EA↑
EKLT [21] ✓ 0.325 0.325 0.284 0.260 0.425 0.175 0.419 0.231 0.171 0.153
DDFT [44] ✓ 0.576 0.472 0.447 0.420 0.648 0.291 0.748 0.746 0.460 0.428
FE-TAP [38] ✓ 0.676 0.589 0.549 0.517 0.538 0.246 0.849 0.844 0.769 0.749

ICP [32] ✗ 0.060 0.040 0.050 0.044 0.103 0.045 0.043 0.039 0.043 0.028
EM-ICP [63] ✗ 0.161 0.120 0.084 0.077 0.298 0.158 0.153 0.149 0.108 0.095
HASTE [3] ✗ 0.096 0.161 0.086 0.076 0.162 0.085 0.082 0.057 0.054 0.033
DDFT E2VID [44] ✗ 0.589 0.495 – – – – – – – –
ETAP w\o FA-loss (Ours) ✗ 0.698 0.599 0.538 0.508 0.676 0.336 0.842 0.841 0.736 0.713
ETAP (Ours) ✗ 0.705 0.598 0.529 0.5 0.705 0.336 0.839 0.838 0.746 0.717

Average shapes trans shapes rot shapes 6dof boxes trans boxes rot

Method Frames FA↑ EA↑ FA↑ EA↑ FA↑ EA↑ FA↑ EA↑ FA↑ EA↑ FA↑ EA↑
EKLT [21] ✓ 0.811 0.775 0.839 0.740 0.833 0.806 0.817 0.696 0.682 0.644 0.883 0.865
DDFT [44] ✓ 0.825 0.818 0.861 0.865 0.797 0.793 0.899 0.882 0.872 0.869 0.695 0.691
FE-TAP [38] ✓ 0.844 0.838 0.931 0.929 0.815 0.813 0.879 0.860 0.731 0.728 0.862 0.861

ICP [32] ✗ 0.256 0.245 0.307 0.306 0.341 0.339 0.169 0.129 0.268 0.261 0.191 0.188
EM-ICP [63] ✗ 0.337 0.334 0.403 0.402 0.320 0.320 0.248 0.242 0.355 0.354 0.356 0.349
HASTE [3] ✗ 0.442 0.427 0.589 0.564 0.613 0.582 0.133 0.043 0.382 0.368 0.492 0.447
DDFT E2VID [44] ✗ 0.794 0.786 – – – – – – – – – –
ETAP w\o FA-loss (Ours) ✗ 0.885 0.879 0.904 0.902 0.868 0.867 0.91 0.891 0.879 0.877 0.866 0.863
ETAP (Ours) ✗ 0.888 0.883 0.91 0.904 0.867 0.865 0.904 0.886 0.866 0.864 0.896 0.893

Table 8. Detailed performance comparison of tracking methods on the EDS (top) and EC (bottom) datasets.
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Figure 13. A few examples of EventKubric. Point tracks are subsampled for better visualization.
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Figure 14. Task 1 - TAP on EVIMO2 data. Visualization of track predictions.
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Figure 15. Additional visualizations on the EDS and EC dataset.
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