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Understanding

Abstract of Appendix
This appendix provides the implementation of redundancy es-
timation (Appendix A), additional discussions (Appendix B),
more implementation details (Appendix C), more visualiza-
tion results (Appendix D), and case study (Appendix E).

A. Redundancy Estimation
In this section, we provide the details about how to estimate
the ratio of temporal repetitive frames and answer-irrelevant
frames, which is denoted as rd and ra, respectively. Specif-
ically, given a T -frame video, we use CLIP-ViT [19] to
extract the representation for each video frame and its text
part.

For temporal repetitive frames, we calculate the cosine
similarities of features between consecutive frames, denoted
as st = cos(ft, ft+1). We then collect all scores into a score
vector s = {st}T−1

t=1 and apply min-max normalization. This
process can be summarized as,

rd =

∑T−1
t=1 I(st > 0.6)

T − 1
, (1)

where I(·) is the indicator function, defined as I(x) = 1 if x
is true, and I(x) = 0 if x is false.

For answer-irrelevant frames, we compute their similarity
using st = cos(ft,q||a), where q||a represents the token-
wise concatenation of question and answer feature. After
applying min-max normalization, we mark a frame as redun-
dant when its frame-to-text similarity falls below a certain
threshold. This is summarized as,

ra =

∑T
t=1 I(st < 0.4)

T
. (2)

Notably, for each benchmark dataset, we randomly sample
20 videos to calculate the average value of redundancy ratio
rd and ra as a rough redundancy estimation.

B. Additional Discussions
B.1. Component-wise Training State on Model Per-

formance

We conduct the extensive experiment to explore the effect of
different components with different training state. As can be

seen in Table 1, only locking LLM and DPE+CCE module
in the first stage exhibits the best, which achieves a obvious
performance gain of 0.16 on VCG-Bench. This can be ex-
plained that DPE+CCE† primarily undertakes the effective
feature encoding, whereas the projector Ffine,Fcoarse may
be only responsible for bridging the semantic gap between
video content and LLM, respectively. Therefore, the learned
knowledge preserved in DPE+CCE† in the first stage may
not be well adapted to learning of the second stage. In the
second stage, unlocking DPE+CCE† achieves the substantial
performance gain. This may be due to that the knowledge
learned in the second stage focuses on video reasoning (for
example, which part need to be focused?), which keeps con-
sistent with the design motivation of DPE+CCE†.

Vision-Language Alignment Instruction Tuning MSVD-QA VCG-Bench
DPE+CCE† Ffine,Fcoarse LLM DPE+CCE† Ffine,Fcoarse LLM Acc Score Score

b b µ b b b 65.45 3.56 2.65
µ µ µ µ b b 61.07 3.20 2.31
b b µ µ b b 62.21 3.34 2.38
µ b µ b b b 67.90 3.72 2.81

Table 1. Performance Comparisons with training state for different
components, which is only pretrained and fine-tuned with video
dataset. µ indicates parameters are frozen while b denotes the
trainable state. DPE+CCE† denotes the DPE module and CCE
module without Ffine,Fcoarse.

B.2. Parameter, Runtime and Memory Complexity

Training Time. Table 2 reports the training hours on 8
A100 GPU w/ and w/o the added modules (CCE and DPE).
Notably, the model without DPE+CCE refers to that we rep-
resents each video frame with two only tokens similar to
LLaMA-VID, whereas the model with DPE+CCE addition-
ally generates the finer tokens for important video frames.
The increased training time probably comes from the com-
putation time of the extra tokens in LLM backbone, rather
than the actual computation time in DPE+CCE module.

Model Stage1 (PT) Stage2 (SFT) Total
w/o DPE+CCE 5.85 19.63 25.48
w DPE+CCE 7.75 25.35 33.10

Table 2. Comparison on training hour of methods without
DPE+CCE and with DPE+CCE.

Computation Complexity. Table 3 reports the inference
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cost of each added components on LVBench with 1000 input
frames on one A100 GPU. The calculated event prototypes
correspond to T-DPC, the filtered event prototypes corre-
spond to Dyn. Select., multi-grained spatial object proto-
types correspond to S-DPC, and Dyn. Enc. corresponds to
Cones and Rods as depicted in CCE. The S-DPC and T-DPC
modules do not have trainable parameters.

Modules
Inference
GFLOPs Param. (M)

Inference
Latency (ms)

CCE S-DPC 0.00 0.00 50.84
Dyn. Enc. 112.16 30.31 15.96

DPE T-DPC 0.00 0.00 608.28
Dyn. Select. 12.91 11.87 3.02

Table 3. Ablative analysis on computation efficiency of added
modules.

Parameter Budget. The additional parameter introduced
by our designed modules compared with LLaMA-VID are
listed in follows:

(a) DPE module: (1) Dynamic Selection (Three MLPs):[
d, d

2

]
→

[
d
2 ,

d
4

]
→

[
d
4 , 1

]
.

(b) CCE module: (1) CA module (Two MLPs):
[d, d] , [d, d]; (2) Fcoarse and Ffine (Two MLPs): [d, d] , [d, d]
Inference Latency with other baselines. As shown in Ta-
ble 4, we showcase the comparison of image resolution,
averaged inference latency, and input strategies when train-
ing. Notably, we achieve the comparable computational
efficiency with LLaMA-VID.

Methods Res. Inference Latency (s) ↓ Training
MSVD ANet-QA VideoMME Setting

LLaMA-VID [13] [ECCV 24] 2242 1.3 3.8 6.3 1 fps
Flash-Vstream [24] 2242 1.7 6.9 8.2 1 fps
DynFocus (L = 25,K/L = 0.8) 2242 1.4 6.4 7.8 1 fps

Table 4. Comparison on image resolution, average inference la-
tency, and input strategies when training.

B.3. Comparison of Method Design with other
Methods.

In this section, we compare the design details with two
closely related studies: LLaMA-VID and Chat-Univ. (a)
Comparison with LLaMA-VID: LLaMA-VID compresses
the each frame into only two tokens: a visual content token
and a text-guided context token. Our compression design
in Rods is somewhat similar to LLaMA-VID. However, the
main difference lies in the resolution of input visual sig-
nals processed by the text-guided compression module (i.e.,
Context Attention). Specifically, LLaMA-VID directly use
visual feature at their original resolution. In contrast, our
method uses the generated semantic prototypes as the input
of Rods. These prototypes are generated by merging the
patch feature with different weight ρi · δi, where i denotes
the patch index in single frame. (b) Comparison with Chat-
Univ. Chat-Univ adopts DPC-KNN clustering algorithm to
form clusters both spatially and temporally. Our method

Model Variants MSVD-QA LV-Bench
Acc Score Acc

K-means [17] 66.5 3.6 23.7
Weighted K-means [6] 66.8 3.6 25.1
DPC-KNN 67.9 3.7 25.8

Table 5. Effects of different clustering algorithm.

Model Variants MSVD-QA VCG-Bench
Acc Score Score

Cross-attention (Soft) 64.74 3.61 2.56
Concat. 66.20 3.67 2.66
Concat. + Multi-grained 67.90 3.72 2.81

Table 6. Effects of different components in CCE module. Concat.
is the concatenation operation.

differs from Chat-Univ in the following aspects during the
clustering process: (1) Temporally: We cluster the frames
by calculating the similarity using downsampled features to
model more fine-grained temporal relationship, rather than
using the feature after global average pooling as in Chat-
Univ. This effectively avoids the information loss when
performing clustering. (2) Spatially: We use exp(ρi · δi)
as weight coefficient when generating the prototype from
patch features. (3) Token Budget: The maximum number
of tokens per frame in our method is approximately 60%
less than that in Chat-Univ, i.e., 40 tokens versus 112 tokens.
Essentially, our model highlights adopting the dynamic en-
coding, which not only reduces the visual nuisance but also
effectively reconciles the spatial details with temporal clues
using affordable tokens.

B.4. Comparison with other Clustering Methods.

There are multiple clustering algorithm [6, 17] available to
form the spatial and temporal prototype. To assess the effect
of different clustering on model performance, we report the
results on two traditional clustering algorithms, K-means
and weighted K-means in Table 5. To save the time over-
head, we train our model using only the video-based dataset.

B.5. The Effect of Compact Encoding in CCE.

As shown in Table 6, we introduce several variants to assess
the impact of fusion strategies between filtered event proto-
types ht and spatial multi-grained prototypes Gt on model
performance. Although direct concatenation uses slightly
more tokens compared to cross-attention, it offers perfor-
mance advantages with greater parameter efficiency, making
it our paramount choice.

B.6. The Effect of Different Training Datasets

In this section, we delve into the effect of data scaling on our
model. We begin with adopting the only video-based dataset
for training. Specifically, we use WebVid-Cap for vision-
language alignment in the first stage and VideoChatGPT-
100K for instruction tuning in the second stage. Com-



Table 7. Ablation of structure and training data. † represents the results running their official open-sourced code, which adopts the same
experimental setting with our DynFocus. For fairness, we adopt GPT-3.5-Turbo-16k version for evaluation for all the model in this table.

Methods
Vision-Language Alignment Instruction Tuning MSVD-QA VCG-Bench VideoMME

Training Datasets Training Datasets Acc Score Score Acc
LLaMA-VID† [13] [ECCV 24] WebVid-Cap VideoChatGPT-100K 62.20 3.5 2.67 -
Flash-Vstream† [24] WebVid-Cap VideoChatGPT-100K 65.29 3.6 2.76 -
DynFocus (K = 25,K/L = 0.8) WebVid-Cap VideoChatGPT-100K 67.90 3.7 2.91 35.1
LLaMA-VID† [13] [ECCV 24] WebVid-Cap, LLaVA-CC3M VideoChatGPT-100K, LLaVA-625K 68.70 3.6 2.67 -
LLaMA-VID (Reported) [13] [ECCV 24] WebVid-Cap, LLaVA-CC3M VideoChatGPT-100K, LLaVA-625K 69.70 3.7 2.89 -
Flash-Vstream† [24] WebVid-Cap, LLaVA-CC3M VideoChatGPT-100K, LLaVA-625K 69.86 3.8 2.97 -
DynFocus (K = 25,K/L = 0.8) WebVid-Cap, LLaVA-CC3M VideoChatGPT-100K, LLaVA-625K 71.20 3.9 3.05 41.2
DynFocus (K = 25,K/L = 0.8) WebVid-Cap, LLaVA-CC3M + Science-QA 71.70 3.9 3.05 41.8
DynFocus (K = 25,K/L = 0.8) WebVid-Cap, LLaVA-CC3M + Science-QA, CLEVRER 71.60 3.9 3.07 42.6
DynFocus (K = 25,K/L = 0.8) WebVid-Cap, LLaVA-CC3M + Science-QA, CLEVRER, NeXT-QA, WebVid-QA 72.30 3.9 3.17 44.1

Table 8. Performance comparison of existing VideoLLM on VideoHallucer Benchmark for hallucination diagnosis. To evaluate the accuracy,
we present the performance of all these models on basic questions, hallucinated questions, and the overall score. † represents the results by
adding rectified prompt “Please Carefully Think.”, and †† denotes the model with DPO tuning.

Models LLM
Size

Object-Relation (%) Temporal (%) Semantic Detail (%) Factual (%) Non-Factual (%) Overall
Basic Halluc. Final Basic Halluc. Final Basic Halluc. Final Basic Halluc. Final Basic Halluc. Final

VideoChatGPT [10] 7B 95.5 7.0 6.0 100.0 0.0 0.0 96.5 4.0 2.0 86.5 13.5 7.0 85.5 27.5 17.0 6.4
LLaMA-VID [ECCV 24] [14] 7B 78.5 59.0 43.5 86.0 25.0 21.0 89.0 24.0 17.0 98.0 2.5 2.5 16.0 14.0 3.5 21.0
LLaMA-VID [ECCV 24] [14] 13B 87.5 55.5 44.5 78.5 35.0 27.0 90.5 30.0 25.5 85.0 17.5 12.5 84.5 46.5 36.5 23.5
Video-LLaMA2 [14] 7B 88.5 21.5 18.0 91.5 8.5 7.5 99.0 1.5 1.0 88.0 8.5 6.5 87.5 23.5 17.0 10.0
VideoChat2 [CVPR 24][11] 7B 26.0 41.5 10.5 23.5 25.0 7.5 33.0 26.0 9.0 32.0 16.5 7.0 34.0 20.0 5.0 7.8
VideoLLaVA [EMNLP 24] [14] 7B 95.0 38.0 34.5 97.5 13.5 13.5 97.0 14.0 12.0 93.0 4.5 3.0 93.0 31.5 26.0 17.8
VideoLaVIT - 94.5 39.0 35.5 88.5 27.0 25.5 96.5 13.0 10.5 97.5 6.0 4.0 97.5 21.5 19.0 18.9
MiniGPT4-Video [2] 7B 80.5 34.5 27.5 68.5 27.0 18.0 68.5 27.0 23.5 86.0 16.5 12.0 83.5 37.5 30.5 22.3
PLLaVA [22] - 76.0 76.5 60.0 46.5 58.0 23.5 83.0 71.5 57.0 85.0 18.0 9.5 85.0 53.5 40.5 38.1
LLaVA-NeXT†† [25] 7B 72.0 73.0 51.5 53.0 61.0 28.0 63.5 69.0 38.0 62.5 41.0 14.0 61.5 60.5 28.5 32.0
DynFocus 7B 86.5 56.0 48.0 86.0 21.5 18.5 92.0 34.0 29.0 96.5 9.0 7.5 - - - -
DynFocus† 7B 88.0 62.0 52.5 87.0 37.5 33.5 91.5 42.0 38.5 98.5 15.0 13.0 96.5 40.0 38.5 35.1

pared with two strong baselines, our model scores 67.9% on
MSVD-QA, even outperforming several models that uses
additional image-based dataset for training. As we introduce
more image-based dataset, our method consistently shows
improving performance, maintaining its leading position.
Notably, the addition of CLEVRER appears to degrade the
model performance. This possibly because that the visual
scene involved in CLEVRER differs significantly from those
in the targeted evaluation benchmarks, despite it potentially
enhances the spatial reasoning and counting abilities of our
model.

B.7. Different L and K
L towards Long-term Video

We assess the performance variation with different L and K
L

when handling longer and more complex videos, as shown
in the following figure,
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We have two observations for longer videos: (a) the optimal

L shifts progressively to the right, from 30 to 55, and further
to 60; (b) a smaller K

L yields better performance. This is
primarily due to long videos introducing more redundant
visual events, while a smaller portion of events should be
adaptively selected for question answering. The default
parameters towards L and K

L are set to 25 and 0.8 in the main
paper when performing evaluation without specification, to
achieve a trade-off between accuracy and efficiency.

B.8. Robustness on Video Hallucination

Several researches have pointed that existing MLLMs suf-
fers from the issues of hallucination, which means that they
tend to generate irrelevant or nonsensical content that devi-
ates from the original visual context. To comprehensively
demonstrate the robustness of our method, we compare the
extent of video hallucination of our method with existing
video MLLMs. The evaluated benchmark VideoHallucer
categorizes hallucinations into two main types: intrinsic and
extrinsic, offering further subcategories for detailed analysis,
including object-relation, temporal, semantic detail, extrinsic
factual, and extrinsic non-factual hallucinations. The overall
results are delineated in Table 8. We have several following
observations: (1) Although all models demonstrate strong
capabilities in answering basic questions, they experience
a significant decline in accuracy when dealing with halluci-



Table 9. Video-Language instructional data statistics for training.
Modality Dataset Task

VideoChatGPT [16] Instruction
WebVidQA [18] VQA
CLEVRER [23] VQAVideo-Text

NeXT-QA [3] VQA
COCO [15] Captioning

Visual Genome [9] Captioning
GQA [7] VQA

OCRVQA [21] VQA
TextVQA [1] VQA

Image-Text

ScienceQA [12] VQA
Vision-Language Total Mixture

Table 10. Video-Language pre-training data statistics for training.
We directly adopt the filtered version following LLaVA-VID [13].

Modality Dataset Source Task
Video-Text WebVid-Cap [4] Captioning
Image-Text LLaVA-filtered CC3M [20] Captioning

Vision-Language Total Captioning

nated questions. This huge gap implies a widespread con-
clusion that existing models are vulnerable to the “Yes/NO’
’bias. In other words, most models tend to generate the
“Yes” answers. (2) Our DynFocus ranks second among all
the baselines. VideoChat2 and PLLaVA share the same
video-based instructional data but obtain the diametrical re-
sults, and the difference stems from source of image-based
knowledge. Specifically, the image-based knowledge pre-
served in PLLaVA originates from a pre-existing image-
based MLLM, whereas the knowledge in VideoChat2 is
learned from scratch based on collected image QA pairs.
On contrary, our model achieves a clear-cut performance
gain of 28.3% compared with VideoChat2, and comparable
results to PLLaVA. It is noteworthy that our method employs
a dynamic encoding strategy, where each frame is encoded
with 40 tokens or 2 tokens depending on its contribution to
question answering, which is much less than VideoChat2
and PLLaVA.

C. More Implementation Details

C.1. Training Details

For most of input videos, we sample the frame at 1 fps fol-
lowing LLaVA-VID [13] and Flash-Vstream [24], except
excessive long video. All input images or frames are resized
to 224 × 224 and encoded as 16 × 16 visual features via
pre-trained EVA-G [5], and the hidden dimension d is 1408.
We set I = 22, J = 2, P = 16, K = 20, and L = 25
when training to achieve a trade-off between performance
and memory efficiency. During vision-language alignment,
we pre-train our model with a batch size of 256, employing
AdamW [8] optimizer with a cosine schedule. The learning
rate is set to 2e-3, and the warmup rate is 0.03. For instruc-
tion tuning, the batch size is 32, and the learning rate is 2e-5.

We empirically observe that training more than 1 epoch
would hamper performance, we thus set the optimal training
epoch to 1. Our model is trained using 8 × NVIDIA A100
80G GPUs. All training and inference experiments were
conducted under BF16 precision to save time and resources.
The training settings are summarized in Table 11.

Table 11. Training settings of our DynFocus.

Settings Stage-1 Stage-2

Batch size 256 32
Learning rate 1e-3 2e-5
Learning schedule Cosine decay
Warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
DeepSpeed stage 1 0
Visual encoder Freeze
Projector Fcoarse,Ffine Open
LLM Freeze Open

C.2. Statistics of Training datasets

The used training dataset for training are listed in Table 9
and Table 10, respectively.

C.3. Details of Long-Term Video Benchmark

LV-Bench. It encompasses a diverse set of tasks aimed at
long video comprehension and information extraction, which
tests six core capabilities. Temporal Grounding (TG) focuses
on understanding sequences and dynamics within the video.
Summarization (Sum) requires an entire understanding of
video from start to finish. Reasoning (Rea) involves four
advanced reasoning skills: casual relationship identification,
understanding for emotional development of character, un-
derstanding for underlying intentions of characters, future
prediction. Entity Recognition (ER) requires the key entities
tracking (such as people, places, and objects) throughout the
video. Event Understanding (EU) needs to summarize the
semantic concept for question answering. Key Information
Retrieval (KIR) emphasizes retrieval of crucial detailed clues
within videos.
MLVU. The evaluation task of MLVU can be categorized
into three types: (1) holistic LVU (TR: Topic Reasoning, AR:
Anomaly Recognition, VS: Video Summary), which requires
to make use of global perspectives from the entire video; (2)
single-detail LVU (NQA: Needle QA, ER: Ego Reasoning,
PQA: Plot QA, SSC: Sub-Scene Captioning), which needs
to pinpoint one critical details in a haystack; (3) multi-detail
LVU (AO: Action Order, AC: Action Count), which calls for
the joint utilization of multiple detailed plots within the long
video to collaborately infer the answer.



What happened in the video? 

In the video, a group of women walked onto a stage and began dancing. They moved their hips and arms in 
a rhythmic manner, and the audience cheered them on. The women continued dancing until the end of the 
performance

Write a story about this video. 

Once upon a time, in a small village nestled in the mountains, there lived a group of women who loved to 
dance. They would gather every week to practice their moves and perform for the villagers. One day, a 
group of travelers passing through the village noticed their talent and offered to invite them to perform at 
a grand festival in the city. The women were thrilled and practiced day and night to prepare for the big 
event.

On the day of the festival, the women arrived at the grand stage and the audience was amazed by their 
graceful and synchronized movements. The women's costumes were adorned with vibrant colors and 
intricate designs that added to the beauty of their performance. The audience cheered and applauded as 
the women danced and twirled around the stage.

The women's performance was so captivating that the audience demanded an encore. The women happily 
complied and returned to the stage, this time with even more energy and enthusiasm. The audience was 
left in awe of their talent and the women's performance was hailed as one of the best at the festival.

From that day on, the women continued to practice and perform, bringing joy and happiness to the people 
of the village and beyond

How many dancers are there in this video? 

There are five dancers in this video.

Can you guess this man's profession from this outfit?

Based on the video, it is likely that the man is a professional shoemaker. He is shown meticulously cleaning 
and polishing a shoe using various tools, which suggests that he is a skilled craftsman in the field of shoe 
care.

What movie can you associate with this scene?

This scene can be associated with the movie "The Godfather." In the movie, a man is shown polishing a 
shoe with a cloth, which is a common task in the world of organized crime. The act of polishing a shoe can 
be seen as a metaphor for the importance of attention to detail and the value of presenting oneself in a 
polished and professional manner, which are important values in the world of organized crime.

Figure 1. Case Studies.



What is the woman wearing and what is she doing in the beginning of the video?

The woman is wearing a black tank top and black tights, and she is seen practicing boxing with a man. She 
is throwing punches at him and kicking him in the thighs

The most likely relationship between the two people in the video is that they are a couple who are training 
together for self-defense purposes. This can be inferred from the fact that they are seen practicing 
together and the woman is seen wearing a black shirt with the words "fight club" on it

What is the most likely relationship between the two people in the video?

What instrument is the man playing in the video?

The man in the video is playing an accordion.

From the font on the back wall, you can infer which region or country this person is from. Please fully 
recall  your knowledge reservation.

The font on the back wall reads "Mexico," indicating that the person playing the accordion is likely from 
Mexico.

Figure 2. Case Studies.

Figure 3. Illustration of learned spatial prototypes in S-DPC. We
highlight the region with dotted line for better understanding.

D. More Visualization Results
In Figure 3, we illustrate the learned semantic prototypes,
where the patches with similar semantic are first clustered.
The formation of spatial prototypes effectively reduces the
token number while enhancing the semantic representation
of each video frame.

E. Case Study
Figure 1 and Figure 2 illustrates the conversation example
towards video understanding. Our method could harness
the information of contextual clues to provide appropriate
and coherent responses based on user prompts. The illustra-
tive examples showcase the remarkable ability of DynFocus
on capturing the temporal dynamics and delicate visual de-
tails, addressing the counting problem as well as imagination
across multiple conversational turns.


