
Enhancing Creative Generation on Stable Diffusion-based Models

Supplementary Material

A. Implementation Details
Baseline Settings. We compared our C3 method with the original Stable Diffusion-based models and ConceptLab [19].
Specifically, we evaluated four Stable Diffusion-based models: SDXL and its distilled variants—Turbo, Lightning 1-step,
and Lightning 4-step. The results for each model are compared with the corresponding version enhanced by C3. Unless
specified otherwise, we used the default settings of the original models, including the classifier-free guidance scale and
negative prompts, to ensure a consistent baseline for evaluating the effectiveness of the C3 method. For the ConceptLab, we
adhered to the default settings outlined in the original paper. These settings include a batch size of 1, 2500 training steps, and
“[object]” as the positive class. To generate 100 samples, we trained the embeddings using 10 different initial seeds, and for
each trained embedding, we generated 10 new images during inference.
C3 Settings. In Table C, we provide the detailed parameter settings used in Section 4. These settings are designed to be
broadly applicable, ensuring that configuring parameters within the provided range will likely produce satisfactory results
for most prompts. The cut-off parameters indicate the extent to which specific frequencies are amplified. For the Turbo
model, we set the cut-off threshold to 5 for every block. For the other models, the cut-off thresholds were set as [10, 5, 5,
5], corresponding to their respective blocks. The rationale for these settings is that the cut-off threshold should align with the
resolution of the internal features, ensuring optimal handling of feature granularity at different blocks. For the amplification
factor selection, we use the mean usability score Use(I) = 1

N

∑
N

i=1 Aesthetic(Ii) +
1
N

∑
N

i=1 CLIP (Ii, c) for I = {Ii}N1
to provide statistically consistent amplification factors. In the experiments, we use the number of samples N = 100. To
balance the scale of the aesthetic score and CLIP score, we min-max scale each score over the configurations {(l,ωi

l
)}(l,i).

The usability bumper is a parameter designed to balance the usability and novelty of the images generated with C3. For the
SDXL model, we set the usability bumper to 0.7, while for the other models, it was set to 0.8. For the sum constraint applied
to scaling factors, which controls the degree of amplification across multiple blocks, we used the sum values of 0.6, 0.8, and
1. The specific value was chosen based on the given prompt and the model in use. Additionally, we provide detailed block-
wise scaling factors for a more comprehensive understanding of the amplification strategy. In the next section, we conduct
in-depth analyses of the effects of various hyperparameters on the results.

B. Ablation Study on the Hyperparameters
B.1. Analysis on Cutoff Threshold
In this subsection, we analyze the effect of various cutoff thresholds. The cutoff threshold c defines the extent to which
frequency we would amplify. The low-frequency mask ML → [0, 1]n→n is then defined with the cutoff threshold c as follows.

M i,j

L
=

{
1 if r(i, j) < c

0 otherwise
(7)

Here, M i,j

L
denotes the element of ML located at the ith row and jth column, and r(i, j) =

√
(i↑ n

2 )
2 + (j ↑ n

2 )
2. The

resolution n ↓ n varies across blocks and models. Therefore, the resolution should be considered when setting the cutoff
threshold. In Figure K, we present the detailed amplification results for various cutoff thresholds for each block. In the first
and second down blocks, a larger cutoff threshold facilitates more colorful variation. However, too large cutoff threshold
introduces a tile pattern in the image that degrades quality. Conversely, a smaller cutoff threshold successfully prevents
this tile pattern but, if set too low, can result in excessive information loss and over-smoothing of the object. By adjusting
the cutoff threshold, one can find outcomes with a unique shape and color pattern. Compared to the shallow blocks, the
amplification results on the third down block and the middle block indicate that these deeper blocks are less sensitive to the
cutoff thresholds. Furthermore, we observe that a smaller cutoff threshold generally permits greater amplification, while a
larger cutoff threshold tends to generate noise images with a smaller amplification factor.

B.2. Analysis on Usability Bumper
In this subsection, we analyze the effect of the usability bumper ε defined in Section 3.3. The usability bumper is used as a
control parameter between usability and novelty. When ε is close to 1.0, the usability score is preserved similar to that of the
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Cut-off Usability Bumper Amplification Factors Block-wise Scaling Factors

SDXL

chair [10,5,5,5] 0.7 1.15 1.6 5 6 sum[0.3,0.3,0.1,0.1]=0.8
teddy bear [10,5,5,5] 0.7 1.2 1.8 4 2 sum[0.4,0.4,0.1,0.1]=1.0

car [10,5,5,5] 0.7 1.25 1.6 5 4 sum[0.3,0.3,0.1,0.1]=0.8
building [10,5,5,5] 0.7 1.25 1.8 5 4 sum[0.2,0.15,0.15,0.1]=0.6
garment [10,5,5,5] 0.7 1.2 1.8 5 2 sum[0.4,0.4,0.1,0.1]=1.0

Lightning (1-step)

chair [10,5,5,5] 0.8 1.5 2.25 5 6 sum[0.2,0.2,0.1,0.1]=0.6
teddy bear [10,5,5,5] 0.8 1.5 2.75 6 7 sum[0.2,0.2,0.1,0.1]=0.6

car [10,5,5,5] 0.8 1.5 2.5 6 6 sum[0.2,0.2,0.1,0.1]=0.6
building [10,5,5,5] 0.8 1.6 2.5 7 8 sum[0.2,0.2,0.1,0.1]=0.6
garment [10,5,5,5] 0.8 1.3 1.9 6 7 sum[0.2,0.2,0.1,0.1]=0.6

fish [10,5,5,5] 0.8 1.4 2.75 5 5 sum[0.2,0.2,0.1,0.1]=0.6

Lightning (4-step)

chair [10,5,5,5] 0.8 1.4 2 7 8 sum[0.2,0.15,0.15,0.1]=0.6
teddy bear [10,5,5,5] 0.8 1.4 2.25 6 9 sum[0.2,0.15,0.15,0.1]=0.6

car [10,5,5,5] 0.8 1.4 1.9 6 6 sum[0.2,0.15,0.15,0.1]=0.6
building [10,5,5,5] 0.8 1.3 1.9 8 7 sum[0.2,0.15,0.15,0.1]=0.6
garment [10,5,5,5] 0.8 1.25 1.8 5 4 sum[0.2,0.15,0.15,0.1]=0.6

Turbo

chair [5,5,5,5] 0.8 1.25 1.5 9 10 sum[0.3,0.3,0.2,0.2]=1.0
teddy bear [5,5,5,5] 0.8 2 1.5 7 10 sum[0.4,0.4,0.1,0.1]=1.0

car [5,5,5,5] 0.8 1.75 2.5 8 10 sum[0.4,0.4,0.1,0.1]=1.0
building [5,5,5,5] 0.8 2.75 3.75 10 10 sum[0.2,0.15,0.15,0.1]=0.6
garment [5,5,5,5] 0.8 1.5 2.25 7 10 sum[0.4,0.4,0.1,0.1]=1.0

sunglasses [5,5,5,5] 0.8 3.75 5 7 10 sum[0.1,0.1,0.2,0.2]=0.6

Table C. Detailed Settings for the used parameters in experiments. The numbers within the list represent the corresponding values applied
to each block.

original image, albeit with a loss of novelty. Conversely, as ε decreases, it permits greater variation from the original image and
enhances novelty, albeit at the expense of the usability score. Figure L shows examples with the use of the various usability
bumper. Turbo with the prompt “a creative cup” is used for the generation. The images with the colored bounding boxes
indicate the selected amplification factors with Equation (6) in Section 3.3. For each block, the amplification factors found
with ε = 0.99, marked with the blue bounding boxes, produce images that maintain high fidelity to the original image, with
only slight changes in detail. Conversely, the amplification factors identified with ε = 0.4, indicated by the green bounding
boxes, generate images with significant variation from the original. Specifically, the shallower blocks exhibit artistic cup
images with high color variation, while the deeper blocks show changes primarily in shape, albeit with compromised image
fidelity. The amplification factors identified with ε = 0.8 as used in the main experiment, marked with the orange bounding
boxes, result in outcomes that fall between these two extremes. The following three images, indicated by colored bounding
boxes, display the results of amplification across all four blocks. For the scaling factors, 0.3, 0.3, 0.2, 0.2 are used for each
block, respectively. The results indicate that ε = 0.8 produces a cup image that is both creative and feasible.

B.3. Analysis on Scaling Factors

We introduce an automatic strategy to determine the optimal amplification factor ω↑
l

in Section 3.3. This approach strikes a
balance between usability and novelty, generating semantically meaningful yet creative features that lead to creative images.

Applying our method across multiple blocks simultaneously enables the generation of more flexible and creative images.
However, when the changes in multiple blocks are simply accumulated, the resulting features may exceed the allowable range
of the pre-trained Stable Diffusion-based model, leading to broken or degraded images. To address this, we apply additional
scaling factors sl during multi-block applications of C3 to preserve image quality. Then, we can formulate the C3 method
applied across multi-blocks as follows:
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(a) SDXL-Turbo, prompt=“a creative chair”
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(b) SDXL-Lightning (1-step), prompt=“a creative house”

Figure K. Amplification results for various cutoff thresholds.
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Figure L. The amplified results with the various usability buffer ω.

f↑(xl) = sl · ω↑
l
· fL(xl) + fH(xl) (8)

Empirically, we observe that bounding the sum of scaling factors across the blocks, denoted as S =
∑

l
sl, aids in

preventing extensive parameter search for sl. Within this sum constraint, the block-specific scaling factors can be adjusted in
a user-controllable manner, allowing for flexible image generation. We observed that selecting an appropriate sum constraint
prevents degradation in image quality, even as the scaling factors for individual blocks vary. (See Figure N)

In Figure M, we display the variations in images for each model and object as S changes. Results highlighted in red
boxes represent the constraint value we used. (Specific block-wise scaling factor settings for the figures are summarized in
Table C). For the SDXL-Lightning 1-step model, we observe that using a summation constraint of S = 0.6 resulted in the
most creative images while maintaining the usability of the object in most cases. For the SDXL-Turbo model, a summation
constraint of approximately S = 1 produces highly creative results while effectively preserving the structural integrity of
objects like chairs. However, for more complex objects, such as buildings, the cumulative amplification tends to introduce
additional noise, requiring a more conservative summation constraint to balance creativity and object clarity.

Furthermore, we quantitatively analyze the necessity of the scaling factor and its correlation with usability, which is
measured using the BLIP score. As introduced earlier in Section 4.2, BLIP score represents the proportion of generated
samples that receive a “yes” response from the BLIP VQA model when asked, “Is this image [object]?”. For each sum of
scaling factors, 100 images are generated with different scaling factors. These 100 cases were obtained by randomly sampling
scaling factors for each block,sl, within the given sum value.

The results reveal that as the sum of the scaling factors increases, the BLIP score decreases, indicating that larger scaling
factors compromise usability. We set the scaling factor constraints to a value that ensures the model does not compromise its
usability significantly, as highlighted with bold markers. Importantly, these findings are based on randomly selected scaling
factors, demonstrating that the quality of the generated images remains robust within the specified sum constraint, regardless
of how the scaling factors are distributed across blocks.
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Figure M. Amplification results for various scaling factors with the sum constraint. The red box presents the sum value we used for each
object.

B.4. Step-wise Analysis
Diffusion models operate through a multi-step denoising process. In this section, we examine the effects of applying C3 at
various stages within this denoising process. We observe the changes in generated images by applying our method at six
distinct points across a total of 50 steps. To quantify the degree of image change, we use LPIPS, a perceptual similarity
metric, to compare the results at each stage with those generated by the proposed method. The LPIPS scores, averaged across
100 different images and random seeds, are shown in Figure O-(top). Both the LPIPS scores and exemplar images show that
when C3 is applied after the fifth step (Figure O-(c)), the resulting images increasingly resemble the original, diverging from
those generated with C3 applied continuously at each step. This analysis demonstrates that the impact of our method is most
pronounced when applied in the early stages of the diffusion process, aligning with prior analyses on diffusion models that
suggest structural content is primarily established in the earlier timesteps [30].

5



SDXL-Turbo SDXL-Lightning 1-step

Figure N. BLIP scores of various scaling factors.

Original
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Figure O. Step-wise amplification results on SDXL (step=50). Significant changes are observed in the earlier steps.
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C. Detailed Experimental Results
C.1. Qualitative Results
C.1.1. Uncurated Samples for SDXL-Lightning (1-step)

ch
ai

r
te

dd
y 

be
ar

ca
r

bu
ild

in
g

ga
rm

en
t

fis
h

Original Ours

Figure P. Uncurated samples generated from SDXL-Lightning (1-step). The samples are generated by manually setting the random seed to
values ranging from 0 to 11.
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C.1.2. Uncurated Samples for SDXL-Turbo
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Figure Q. Uncurated samples generated from SDXL-Turbo. The samples are generated by manually setting the random seed to values
ranging from 0 to 11.
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C.1.3. Uncurated Samples for SDXL-Lightning (4-step)
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Figure R. Uncurated samples generated from SDXL-Lightning (4-step). The samples are generated by manually setting the random seed
to values ranging from 0 to 17.
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C.1.4. Uncurated Samples for SDXL

ch
ai

r
te

dd
y 

be
ar

ca
r

bu
ild

in
g

ga
rm

en
t

Original Ours

Figure S. Uncurated samples generated from SDXL. The samples are generated by manually setting the random seed to values ranging
from 0 to 17.

10



C.1.5. Uncurated Samples for ConceptLab
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Car

Chair

Fish
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Garment

Figure T. Uncurated samples generated from ConceptLab. Each column of samples is trained with a different initial seed.
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C.2. Quantitative Results
We list the detailed quantitative results in Table D, corresponding to each object we use in Section 4.2. FID, precision and
recall are computed based on two sets of images, conventionally say, real dataset and fake dataset. For the real dataset, we use
100 images generated from SDXL with the prompt of “a [object]”. For the fake dataset, we use 100 images generated from
each model and method. Here, we underscore again that FID and precision are interpreted as the opposite of the conventional
way as our aim is to produce the object images that are distinct from the typical target object. While the image generated
with our method are to be distinctive, it should also be recognized as the target object. Thus, we provide the reference scores
which are computed using the fake dataset, generated from SDXL with the prompt of “a [reference-object]” for each object.

The overall trends are shared across the objects. For novelty metrics, our method outperforms the original generation in all
objects. Especially for FID, our method does not exceed the reference score, indicating that the generated images are novel
yet perceived as different objects. For ‘chair’, our method shows low precision scores compared to the reference score, as
the outlook of chairs are significantly different from the ordinary chair images. However, the high BLIP score as a usability
metric defenses that the generated images with our method still look as chairs. Conversely, ConceptLab, a baseline method for
comparison, presents significantly low BLIP scores for some objects as illustrated in Figure 6. This limitation of ConceptLab
arises from the increased difficulty in defining sub-categories within a specific category.

Notably, our method also increases the diversity within the generated creative samples. Both LPIPS scores, which compute
the distances between the generated samples in the feature space, and Vendi scores, which represent the effective number of
modes among the samples, show notable improvement over the original generation across the objects. Recall scores, which
are considered a measure of mode coverage within the real dataset, are comparable in most cases and show significant
improvement for the Turbo model, which suffers from the mode collapse issue.
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Object Model Method Novelty Diversity Usability
FID↑ (↔) Prcs↑ (↗) Rcl (↔) LPIPS (↔) Vendi (↔) CLIP (↔) BLIP (↔)

Chair

Lightning
(1-step)

Orig 108.91 0.81 0.93 0.17 6.58 0.29 0.97
Ours 185.18 0.35 0.84 0.27 8.54 0.27 0.89

Turbo Orig 94.95 0.96 0.51 0.20 3.76 0.29 1.00
Ours 132.72 0.56 0.62 0.24 5.92 0.29 0.99

Lightning
(4-step)

Orig 91.55 0.79 1.00 0.20 5.72 0.29 0.99
Ours 178.05 0.34 0.76 0.30 8.45 0.28 0.82

SDXL Orig 104.94 0.84 0.97 0.18 7.77 0.29 0.96
Ours 158.88 0.60 0.91 0.25 8.57 0.28 0.87

Real-to-Ref - 207.47 0.87 0.52 - - - -
ConceptLab - 266.58 0.59 0.66 0.37 10.46 0.23 0.01

Teddy Bear

Lightning
(1-step)

Orig 65.55 0.99 0.28 0.10 1.98 0.29 1.00
Ours 82.58 0.80 0.69 0.23 2.82 0.28 0.79

Turbo Orig 84.89 0.89 0.08 0.14 1.33 0.30 1.00
Ours 85.11 0.79 0.53 0.28 1.71 0.29 1.00

Lightning
(4-step)

Orig 78.07 0.91 0.87 0.20 1.76 0.29 1.00
Ours 86.96 0.50 0.78 0.30 3.08 0.29 0.95

SDXL Orig 67.26 0.91 0.98 0.19 3.03 0.29 1.00
Ours 97.21 0.84 0.96 0.31 4.07 0.28 0.89

Real-to-Ref - 297.82 0.71 0.31 - - - -
ConceptLab - 337.86 0.87 0.29 0.33 8.12 0.26 0.07

Garment

Lightning
(1-step)

Orig 172.54 1.00 0.76 0.31 7.07 0.27 1.00
Ours 193.78 0.93 0.87 0.39 8.52 0.27 0.93

Turbo Orig 212.69 0.87 0.15 0.20 5.21 0.26 1.00
Ours 214.95 0.68 0.47 0.36 6.95 0.26 0.93

Lightning
(4-step)

Orig 165.04 0.91 0.93 0.29 7.58 0.26 0.98
Ours 176.02 0.72 0.92 0.37 8.78 0.26 0.89

SDXL Orig 167.05 0.89 0.95 0.22 8.31 0.27 0.94
Ours 196.13 0.74 0.94 0.38 9.10 0.26 0.81

Real-to-Ref - 232.91 0.83 0.80 - - - -
ConceptLab - 225.85 0.89 0.71 0.37 7.79 0.26 0.66

Car

Lightning
(1-step)

Orig 92.83 0.84 0.90 0.36 4.78 0.25 0.89
Ours 111.43 0.61 0.93 0.42 5.25 0.26 0.88

Turbo Orig 131.62 0.77 0.45 0.30 3.08 0.26 1.00
Ours 150.14 0.22 0.96 0.46 4.89 0.26 0.84

Lightning
(4-step)

Orig 86.82 0.85 0.89 0.39 3.90 0.25 1.00
Ours 110.63 0.55 0.95 0.43 4.70 0.26 0.95

SDXL Orig 119.38 0.54 0.96 0.30 5.47 0.26 0.88
Ours 137.24 0.39 0.98 0.34 6.24 0.26 0.77

Real-to-Ref - 220.79 0.31 0.38 - - - -
ConceptLab - 151.87 0.47 0.79 0.40 6.70 0.27 0.71

Building

Lightning
(1-step)

Orig 179.90 0.83 0.56 0.34 6.12 0.26 1.00
Ours 242.10 0.57 0.64 0.37 6.07 0.24 0.97

Turbo Orig 208.01 0.86 0.17 0.28 4.31 0.24 1.00
Ours 237.44 0.32 0.82 0.48 5.19 0.24 1.00

Lightning
(4-step)

Orig 165.12 0.84 0.89 0.35 6.17 0.25 0.98
Ours 222.89 0.65 0.75 0.37 6.37 0.24 0.99

SDXL Orig 182.38 0.76 0.96 0.30 8.00 0.24 0.97
Ours 200.18 0.74 0.87 0.32 8.64 0.24 0.97

Real-to-Ref - 281.64 0.09 0.80 - - - -
ConceptLab - 274.19 0.43 0.77 0.37 8.98 0.23 0.13

Table D. Object-wise quantitative results. ‘Prcs’ and ‘Rcl’ refer to precision and recall, respectively.
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C.3. User Study

Object: Chair

(a) (b) (c)

Q1. Do these images represent proper chairs? 

ChairsNot chairs

1 2 3 4 5

Q2. Do these images look novel? 

NovelTypical

1 2 3 4 5

Figure U. Example of user study questionnaires for the object ‘Chair’. The questions are posed repeatedly for each set of images. (a)
SDXL-Turbo (Original). (b) SDXL-Turbo (Ours). (c) ConceptLab. Images are carefully curated as the best to represent each method.
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Figure V. Object-wise results of user study. Our method improves the original results in terms of both usability and novelty for all objects.

We conduct a user study to evaluate the creativity of generated samples for each method with human perception. Given a
set of images, we ask participants questions regarding two main aspects of creativity: usability and novelty. As an example
illustrated in Figure U, with a target object ‘chair’, we ask (1) whether these images represent proper chairs and (2) whether
these images look novel. The responses are collected using a 5-level Likert scale. For a target object, images are generated
from the model’s default setting, marked as ‘Orig’, and from C3, marked as ‘Ours’. Additionally, images are generated from
ConceptLab for baseline comparison. For each image set, we carefully select 9 images that appear to be the most creative
within the generated images for each method. While each method is anonymized in the questions, we denote each method in
the result as ‘Turbo (Orig/Ours)’, ‘Lightning (1-step) (Orig/Ours)’, and ‘ConceptLab’, respectively.

In total, 31 participants have responded. We summarize the responses for each object in Figure V. The blue bar plots
represent results corresponding to Turbo, while the yellow bar plots represent results corresponding to Lightning (1-step).
The darker color represents C3 marked as ‘Ours’, while the lighter color represents the default generation marked as ‘Orig’.
The results corresponding to ConceptLab are presented with the gray bar plots. Our method significantly enhances novelty in
all cases, with only a relatively small reduction in usability scores. Notably, our method outperforms ConceptLab in usability
scores and achieves higher or comparable novelty scores.
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D. Types of Creativity
Shape Color TextureOriginal C3(Ours) Shape Color TextureOriginal C3(Ours)

Figure W. Types of creativity classified by GPT 4o of samples generated by the proposed method compared to samples generated by the
original models. Responses are multiple-choice, among ‘Shape’, ‘Texture’, and ‘Color’.

Here, we present the categories of creativity amplified in samples generated using the proposed method. All images are
generated using the prompt “a creative [object].” The teddy bear, garment, and chair images are generated based on the
backbone model Lightning (4-step), while a building image (left) and the car images are generated using the Lightning
(1-step) model. Another building image (right) is generated with the Turbo.

Same as the settings of Section 5.2, we utilize GPT4o [1] to obtain responses. The exact question posed is:
“Please identify the components that contribute to the creativity of the second image (ours) compared to the first image

(original). The components can be selected from shapes, colors, and textures. If none apply, state no.”
As illustrated in Figure W, images generated with C3 demonstrate enhancements in various aspects of creativity. For

instance, in the case of “a creative teddy bear,” the generated image becomes more creative through enriched color (a more
vibrant, colorful body and scarf) and texture (a fluffy appearance).

E. Failure Cases
bicycle teapot

(a) Case 1: Degrade in Functionality

victorian painting

(b) Case 2: Limited Creative Features

donut

jacketbracelet

Figure X. Failure cases of C3. Lightning (1-step) is used for ‘bicycle’, ‘victorian painting’, and ‘bracelet’ and Turbo is used for ‘teapot’,
‘donut’ and ‘jacket’.

While we show C3 successfully enhances the creative generations of pretrained Stable Diffsuion-based models, there
exist failure cases. We present two main failure cases in Figure X. In Case 1, C3 produces genuinely novel images, but this
comes at the cost of reduced functionality. This occurs primarily due to the limitations of the current usability score, which
is inadequate for assessing detailed functionality. In Case 2, the generated images exhibit enhanced creativity (e.g., modern
fashion in Victorian-style painting), but they do not significantly deviate from common patterns: a woman in a painting, a
round-shape donut, a colorful bracelet, and a color-patched vinyl jacket. We presume that these patterns originate from biases
present in the pre-trained models. We leave the generation of creative outputs that mitigate model bias for future work.
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F. Extension on Non-SD Models
Unet-based Model. In Figure Y, we applied C3 to Kandinsky 3.0. Similarly to Stable Diffusion XL (SDXL), structural/color
variation occurs more on down blocks, while up blocks increase the filter effect, such as contrast.
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Figure Y. (Left) Block-wise amplified images on Kandinsky 3.0. (Right) Results of C3 applied on Down blocks of Kandinsky 3.0.

Transformer-based Model. In Figure Z, we applied C3 on Hunyuan-DiT. Amplifying blocks 5–20 yields the most vari-
ation, while blocks beyond 20 show minimal change even at maximum amplification. Nevertheless, the impact of C3 on
transformer-based models requires careful study, which we leave for future work.
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Original Block 6 Block 12 Block 30
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Figure Z. (Left) Images generated with amplified features for the ith transformer block of Hunyuan-DiT. (Right) Block-wise LPIPS score
between the original image and the amplified image.

G. Related Work
G.1. Stable Diffusion Models
Diffusion models [9, 24] learn to generate images from random noise through a denoising process, demonstrating stable
training and remarkable performance in image and video generation compared to GANs. Latent Diffusion model [20], instead
of directly processing images during the denoising process, learns the encoded latent vectors of the images, successfully
reducing the size of the model. Stable Diffusion XL (SDXL) [17], a widely used Latent Diffusion model, is publicly available
with accessible source code and trained models. Diffusion models undergo denoising processes in T steps in order to generate
a sample. To accelerate high-quality sample generation, distilled models have been developed. SDXL-Turbo (Turbo) [21]
employs Adversarial Diffusion Distillation (ADD) to condense the multi-step denoising process of a large pre-trained teacher
model into 1-4 steps while maintaining high quality. However, due to the limitations of adversarial training, Turbo cannot
prevent mode collapse. SDXL-Lightning (Lightning) [12] combines ADD with progressive distillation to address mode
collapse while quickly generating high-quality samples in one or a few steps.

SDXL and its distilled variants share a U-net structure in the backbone to generate a latent noise. The U-net structure
is composed of three down blocks, decreasing the resolution of the internal feature maps while increasing the number of
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channels, a middle block, and three up blocks, increasing the resolution of the feature maps again.
Recent research [10] indicates that up blocks in Stable Diffusion models are primarily associated with style while the

structure is preserved. This aligns with our observation that up blocks minimally alter the creative style when amplified,
although some filter effects are introduced. Other models may exhibit different block characteristics; for instance, Disco-
diff [28], influenced by StyleGAN, employs discrete latents for each block and trains end-to-end, potentially redefining block
roles.

G.2. Creative Generation
Research on achieving creative generations in generative models has been continuously advancing. Based on GANs, creative
generations are encouraged by employing contrastive loss or diversity loss from existing categories or samples [5, 16,
22]. Recent advances in generative modeling have aimed to balance creativity with diversity in image generation, focusing
on approaches that allow inspiration from existing concepts without direct replication. ProCreate [13], an energy-based
approach, proposes guiding diffusion model outputs away from reference images in the latent space, thus improving diversity
and concept fidelity in few-shot settings. This method prevents training data replication and has been shown to enhance
sample creativity across various artistic styles and categories. On the other hand, Inspiration Tree [25] introduces a structured
decomposition of concepts, where a hierarchical tree structure captures different visual aspects of a given concept. Adding to
this line of creative generative techniques, ConceptLab [19] leverages a Vision-Language Model (VLM) with diffusion priors
to further push the boundaries of novel concept generation within broad categories. By iteratively applying constraints that
differentiate generated concepts from existing category members, ConceptLab enhances the creation of unique, never-before-
seen concepts, enabling hybridization and exploration within a given category. While these approaches represent significant
advancements in generating creatively inspired outputs, they necessitate burdensome additional training or optimization. To
the best of our knowledge, there is no training-free approach for generating creative samples.

G.3. Feature Map Manipulation
GAN Dissection [3] pioneered techniques to visualize and control the inner workings of GANs by identifying “interpretable
units” that correspond to distinct objects within generated images. This approach enables precise feature control, allowing
specific objects to be added or removed within scenes, making it effective for targeted scene composition. Expanding on
internal feature manipulation to the text-to-image diffusion models, research into internal features of diffusion models is
advancing rapidly [4, 6, 11, 26]. Especially, P+ [26] takes a step further by introducing multi-layered conditioning, enabling
flexible visual manipulation and enhanced image customization through layer-specific control. Our work builds on these
foundations by exploring feature manipulation in the Fourier domain for even greater creativity control. FreeU [23] also
operates within the Fourier domain, leveraging Fourier transforms on skip connections to reduce low-frequency information,
ultimately improving image fidelity in diffusion models. In contrast, our approach amplifies creativity by applying Fourier-
based manipulation directly to the backbone features in the specific blocks rather than skip connections. This distinction
allows our method to focus on enhancing creative aspects, making it suited for generating novel and expressive images.
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