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Abstract

In this supplementary material, we provide more details
of our GliaNet in Sec. 1, more ablation studies and dis-
cussions in Sec. 2, and more experiments and visualization
results are shown in Sec. 3. We also provide the source
code at: https://github.com/hanmengqiaoyx/
GliaNet.

1. Implementation and Training Details
Our GliaNet consists of a Neural Module (NM) and a Glia
Module (GM) that optimizes the communication of NM,
where the Glia is composed of Oligodendrocyte (Oli) and
Astrocyte (Ast). In the GM, Oli identifies the winning
neurons to participate in subsequent propagation, and their
weights are modulated by Ast.

To apply the contrastive learning loss on the GM, i.e., Oli
with Φ = {ϕH, ϕg, ϕU} and Ast with Φ = {θH, θf , θU},
Take the interaction between neuron states and Oli as an
example, we first build the positive pairs. Followed by
different clipping, grayscale and affine transformations on
the training data, we generated matching pairs from the
training data and then obtained the two views of neuron
states X and X̂ for NM. By feeding X and X̂ to our GM,
we obtained X∗ = {wk}Mk=1 and X̂∗ = {wM+k}Mk=1.
Note, xk and xM+k are regarded as a positive pair. De-
note z = c(Cancat(X∗, X̂∗)) as a normalized projection,
we finally get the comparative learning loss (Eq. (11) in our
main paper).

Lreg
k (Φ,Θ) = −

N∑
i=1

log
exp(zi · zi+N )/τ∑2N

p=1 1[p ̸=i] exp(zi · zp)/τ
,

(11)
where 1 ∈ {0, 1} is an indicator function evaluating to 1 if
l ̸= q and τ is a temperature. Here, zj is the kth element

*corresponding authors
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Figure 1. The evolution of the GliaNet during training is illus-
trated in the change curve. (a) displays the variation in the differ-
ence between train loss and epoch, while (b) exhibits the fluctua-
tion in the difference between train accuracy and epoch.

(a) Input (b) E=100 (c) E=150 (d) E=200

Figure 2. We visualize the interaction between Glia and neurons
at different epochs (E) during training on images (a).

of z. The Lreg
k (Φ,Θ) encourages Oli in the kth Glia unit,

denoted as Ok, to learn similar representations of different
neuron states features from the same neuron state X of NM.
Similarly, the relationship between Ast, Ak, and winning
neuron weights follows a comparable pattern.

Fig. 1 depicts the change curve when employing NM as
ResNet50 on imageNet-1k [4]. The decreasing loss curve
signifies the convergence achieved by our training scheme.
The GliaNet undergoes training using the SGD optimizer
with a learning rate of 1e-1.

We also provide a clearer explanation and visualization
to elucidate the role of the interaction between Glia and neu-
rons in optimizing GliaNet. Fig. 2 illustrates the increasing

https://github.com/hanmengqiaoyx/GliaNet
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Table 1. Comparison of different sizes of parameters of the Neural
Module (NM) in GliaNet on CIFAR10. We set the NM as ResNet18
with different sizes. Taking ‘64-128-256-512’ as an example, it
denotes the output of the four dense blocks, respectively. We high-
light the best and the second-best numbers in bold and bold, re-
spectively.

Pattern Architecture
Acc
(%)

Params
(M)

Time Cost
(GPU days)

Tiny-ResNet18 64-128-128-256 96.60 6.15 0.06
Orgn-ResNet18 64-128-256-512 96.72 6.72 0.11
Large-ResNet18 64-256-256-512 96.86 7.00 0.14

Table 2. Experiments on classification with different joint func-
tions U() on CIFAR10.

Manners
Optimization for

Glia units Interaction
Acc
(%)

Params
(M)

ResNet18 [6] - - 94.96 11.17
Case 1 Independent Current 96.57 7.35
Case 2 Independent History 96.59 7.38
Case 3 Chain Current 96.81 7.00
Case 4 (Ours) Chain History 96.86 7.00

Table 3. Experiments on classification with different adaptive
functions H() on CIFAR10.

Manners H()
Acc
(%)

Params
(M)

ResNet18 [6] - 94.96 11.17
Case 1 Compression 96.68 7.35
Case 2 Coarse-global compression 96.82 7.06
Case 3 (Ours) Fine-global compression 96.86 7.00

epoche (E) of Glia-Neuron interactions, leading to a height-
ened focus on target regions through the discovery of an
optimal sub-network and its parameters by the Glia.

2. More Ablation Studies and Discussions

This section discusses the rationality of our method,
wherein the Neural Module (NM) in GliaNet is consistently
configured as ResNet18 across all experiments and evalu-
ated on the CIFAR10 dataset.

2.1. The Number of Parameters

Regarding the varying parameters, the capacity of our
GliaNet is intricately related to the size of the selected NM.
To this end, we present the results with different numbers
of parameters (Tiny, Organ, and Large) based on ResNet18
in Tab. 1. Our method consistently demonstrates competi-
tive performance even when employing the tiny ResNet18,
where the capacity is significantly reduced.

Table 4. The accuracy of our GliaNet with respect to the number
of NM neurons from 25% to 100% that participate in the interac-
tion with Glia.

Num of Neurons ResNet18 25% 50% 75% 100%
Acc (%) 94.96 95.50 96.25 96.72 96.86
Params (M) 11.17 9.86 8.28 7.75 7.00

2.2. The architecture of U() in GliaNet

The joint function U() facilitates collaborations in the Glia,
i.e., G{M}. We conduct progressive ablation experiments
with four cases to validate the effectiveness of our chain
optimization strategy. Case 1: Independent optimization for
multiple Glia units, where each Glia unit independently op-
timizes the communication of a subset of pre-neurons. Case
2: Independent optimization of Glia units based on their
output at different iterations. Case 3: Chain optimization
for a group of Glia units to establish interactions in G{M}.
Case 4 (Ours): Interaction based on the output of Glia units
at different iterations. Tab. 2 shows the performance with
four cases. Note that all cases achieve better accuracy com-
pared to the ResNet18 baseline, and our designed chain op-
timization achieves the best performance.

2.3. The architecture of H() in GliaNet

We perform incremental ablation experiments on the inte-
gration function H() with three cases to verify the necessity
of making Oli- and Ast-input global. Case 1: Compres-
sion only, where connections in the compressed weights are
considered irrelevant. Case 2: Coarse-global compression,
involving the establishment of correlations among all con-
nections in the weight during compression. Case 3 (Ours):
Fine-global compression, which entails compression while
initially establishing correlations between the input connec-
tions of Oli and Ast, followed by correlating the input of
every Oli and Ast. Tab. 3 reports the results, indicating su-
perior performance with Fine-global compression. The pro-
cess of establishing correlations between connections ex-
hibits a significant improvement in the optimized capacity
of Glia.

2.4. Number of Interactions Neurons

We investigate the results of randomly selecting 25%, 50%,
75% and 100% of neurons in NM to establish the interac-
tion with Glia, while the remaining neurons maintain one-
direction propagation. Tab. 4 reports that as more NM neu-
rons establish interactions with Glia, the adaptive ability of
GliaNet improves, resulting in increased accuracy. Fig. 3
illustrates that the more neurons in NM participate in the in-
teraction, the more attention of NM covers the target region
on the image. The visualization follows the Grad-CAM
[13].



(a) Input (b) 25% (c) 50% (d) 75% (e) 100%

Figure 3. We display the attention of NM on images (a) with dif-
ferent percentages of NM neurons that are involved varying from
25% to 100% (b)-(e).

(a) (b)

Figure 4. Comparison of accuracy and parameters concerning dif-
ferent numbers of LSTM stacking in each Oli and Ast on CIFAR10.
We set NM in our GliaNet to ResNet18. (a) Results of Acc. (b) The
final NM parameters.

2.5. Number of LSTM in each Oli and Ast

As the number of Glia increases, the input of each Oli and
Ast will decrease, allowing us to design their capacity to
be smaller. Considering the time cost, we set the num-
ber of Glia to 4, i.e., G{4} = {O{4},A{4}}, in the main
paper. Building upon this configuration, we further study
the impact of varying amounts of LSTM contained in the
Oli and Ast on accuracy and final parameters. We set NM
in our GliaNet to ResNet18 and evaluated on CIFAR10.
Fig. 4a illustrates the relationship between test accuracy and
the numbers of LSTM, and Fig. 4b displays the parameters
concerning the number of LSTM. We can observe that the
performance has stabilized using three LSTMs to construct
each Oli and Ast.

Fig. 5 depicts the transfer of attention regions on the in-
put image with NM (ResNet18) under the stack of different
numbers of LSTM within each Oli and Ast. By increasing
the number of LSTM among them, the receptive field of
NM for the target region on the input image gradually ex-
pands, further enhancing the valuable information that the
NM focuses on. When the number of LSTM is 3, NM’s at-
tention on the image primarily centers on the target region.

Table 5. The accuracy of our GliaNet with respect to different
values of the contrastive loss coefficient λ in Eq. (11).

Hyperparameters λ Acc (%) Params (M)
λ = 1e− 1 96.86 7.00
λ = 1e− 2 96.80 7.06
λ = 1e− 3 96.75 7.18
λ = 0 96.68 7.32

Table 6. Comparison with the tate-of-the-art NAS methods with
contrastive learning regularization term in their evaluation strat-
egy. GliaNet and NAS architectures are searched and evaluated
on CIFAR10. Time cost only denotes the search time using our
method and the ‘CL + NAS’ methods. Ours (DenseNet-BC) de-
notes that the NM in our GliaNet is set to DenseNet-BC.

Architecture Acc (%)
Params

(M)
Time Cost

(GPU days)
DenseNet-BC [8] 96.54 25.60 -
CL + NAS-LID [7] 97.59 6.87 2.87
CL + HOTNAS [17] 97.62 4.72 3.96
Ours (DenseNet-BC) 97.82 7.49 0.70

For example, the 1st row in Fig. 5 labeled as ‘Bird’, the op-
timization of Glia in the first (Q = 1), the Glia increases the
attention of NM on the input image. Then, Glia gradually
guides NM to diffuse attention to other locations within the
target region.

2.6. Hyperparameter Selections

Hyper-parameter selections are typically conducted on
small datasets and subsequently applied to all datasets to
verify their scalability [1]. Accordingly, we perform the ex-
periment on CIFAR10. The NM in our GliaNet is set to
ResNet18, with the remaining settings identical to those in
the main paper.

We study λ in Eq. (11) in the main paper, where λ is
the coefficient of contrastive loss. Tab. 5 reports that our
method achieves the best accuracy when setting λ = 1e-
1. Notably, even without the contrastive loss, our re-
sults (95.68%) surpass those of the State-of-the-Art (SOTA)
methods CDS [19] and AstroNet [5] (95.49% and 96.52%,
respectively, as shown in Tab. 1, main paper) on CIFAR10.

2.7. The Effectiveness of Contrastive Learning

We allow the SOTA Neural Architecture Search (NAS)
methods, NAS-LID [7] and HOTNAS [17], to use the con-
trastive learning (CL) regularization term [19] in their eval-
uation strategies, to more fairly compare the performance of
our method with ‘CL + NAS-LID’ and ‘CL + HOTNAS’.

Tab. 6 reports the performance results of our GliaNet and
‘CL + NAS’. Both of them are searched and evaluated on
CIFAR10 [9]. Compared with ‘CL + NAS-LID’ and ‘CL



(a) Input (b) Standard (c) Q = 1 (d) Q = 2 (e) Q = 3 (f) Q = 4

Figure 5. We display the NM’s (ResNet18 on CIFAR10) attention, optimized by our proposed Glia, on the input image (a) with different
numbers of LSTM varying from 1 to 4 (c)-(f). From the 1st − 2nd rows, the labels are ‘Bird’ and ‘Truck’. (b) Standard ResNet18. The
attention map adaptively focuses on the target region. Q denotes the number of LSTM within each Oli and Ast.

Table 7. Experiments on classification with different methods on
ImageNet-1k. With the same settings, and CL regularization term,
compare networks constructed by our G-N model and artificial
Astrocyte-Neuron model. Our (ResNet50) denote that the NM in
GliaNet is set to ResNet50.

Architecture Acc (%) Params (M)
ResNet50 [6] 75.30 26.11
AstroNet [5] 78.31 8.70
AstroNet∗ [5] 78.54 8.54
Ours− (ResNet50) 78.49 8.54
Ours (ResNet50) 78.98 8.20

+ HOTNAS’, our method improves the accuracy by 0.23%
and 0.20%, respectively. In addition, we achieve a signifi-
cant advantage in the time cost. Our advantages in compu-
tational resources and time costs are more obvious.

We also compare our GliaNet with AstroNet [5], with
the CL regularization term, denoted as AstroNet∗, and ours
without the CL regularization term Ours−. The comparison
results on ImageNet-1k are demonstrated in Tab. 7, with the
CL regularization term, our GliaNet outperforms AstroNet∗

by 0.44% and Ours− by 0.49% in accuracy. This demon-
strates the effectiveness of the group of Glia units cooperat-
ing with each other compared to a single astrocyte.

3. More Experiments and Visualization Results
3.1. Compared to SOTA Dropout and Pruning

Methods

As shown in Tab 8, our method demonstrates superior per-
formance compared to the latest early dropout and pruning
techniques on the ImageNet-1k. The proposed approach not
only consistently surpasses the accuracy of the top-three

Table 8. Experiments comparing with dropout and pruning meth-
ods on ImageNet.

Architecture Acc (%)
Compression/Dropout

Rate (%)
Change

(%)
ViT-Tiny/32 76.30 - -
+ early dropout [12] 76.37 5 ↑ 0.07

+ early dropout [12] 76.70 10 ↑ 0.40

+ early dropout [12] 76.60 20 ↑ 0.30

Ours (ViT-Tiny) 77.45 14.21 ↑ 1.15

SWIN-S 83.00 - -
NViT-H [16] 82.95 40 ↓ 0.05

Ours (SWIN-S) 84.02 38 ↑ 1.02

early dropout methods but also exceeds the current SOTA
accuracy achieved by the SWIN-S.

3.2. More SOTA Segmentation Methods

We compare our method with two masked-attention-based
segmentation methods, Mask2Former [3] and MP-Former
[18] on the COCO dataset [11]. Note, the backbone, i.e.,
ResNet50, of the standard segmentation method is pre-
trained on ImageNet-1k. Keeping the same as other settings
in Mask2Former and MP-Former methods, we only replace
ResNet50 with ResNet50-Ast and ResNet50†, which are
pre-trained by AstroNet and our method.

Tab. 9 reports the comparison of our method with oth-
ers on COCO. The pre-trained G-N model-based backbone
(ResNet50†) with our method, compared to the second-best
method, i.e., ResNet50 in Mask2Former (44.3%) and As-
troNet (ResNet50-Ast) in MP-Former (45.5%), our method
improves the AP accuracy of 0.5% and 0.4%.



Table 9. Experiments on segmentation with various backbones on
COCO. ResNet50, ResNet50-Ast and ResNet50† pre-trained on
ImageNet-1k by standard training, AstroNet and Ours.

Model backbone AP APS APM APL

Mask2Former [3] ResNet50 44.3 24.0 47.6 65.2
AstroNet [5] ResNet50-Ast 44.1 23.8 47.6 65.0
Ours ResNet50† 44.8 24.5 47.9 65.4
MP-Former [18] ResNet50 45.5 25.2 48.7 66.2
AstroNet [5] ResNet50-Ast 45.7 25.0 48.8 66.5
Ours ResNet50† 45.9 25.6 49.1 66.5

Table 10. Experiments on object detection with various backbones
on COCO. ResNet50, ResNet50-Ast and ResNet50† pre-trained on
ImageNet-1k by standard training, AstroNet and Ours.

Model backbone AP APS APM APL

DEQDet [15] ResNet50 48.6 31.6 51.8 62.9
AstroNet [5] ResNet50-Ast 48.8 31.4 52.0 62.6
Ours ResNet50† 49.0 31.9 52.4 63.0
DiffusionDet [2] ResNet50 46.6 28.9 49.2 62.1
AstroNet [5] ResNet50-Ast 46.7 29.0 49.0 50.0
Ours ResNet50† 46.9 29.2 49.5 61.8

3.3. More SOTA Object Detection Methods

Tab. 10 shows our object detection performance compared
with DEQDet [15] and DiffusionDet [2] on the COCO
dataset. We employ the same method for acquiring back-
bones as in the segmentation task and then fine-tune them
with identical settings for the object detection task. Exper-
imental results indicate that utilizing the pre-trained back-
bone (ResNet50†) from our method results in AP improve-
ments of 0.4% and 0.3% compared to the second-best As-
troNet (ResNet50-Ast) in DEQDet (48.8%) and Diffusion-
Det (46.7%), respectively.

3.4. Results on Neuromorphic Dataset

The comparison between our GliaNet and other methods on
the neuromorphic dataset CIFAR10-DVS [10] is shown in
Tab. 11. Our GliaNet exhibits the superior performance.
For CIFAR10-DVS, our accuracy surpasses the second-
best AstroNet (78.67% and 81.38%) by 0.15% and 0.12%
on ResNet18 and ResNet50, respectively. Our method
achieves a relatively smaller model capacity.

3.5. Results on Few-shot Dataset

We verify the effectiveness of our method on the few-shot
dataset, Mini-ImageNet [14]. The Mini-ImageNet dataset is

Table 11. Experiments on classification with different methods
on neuromorphic dataset CIFAR10-DVS. With the same settings,
compare networks constructed by our G-N model and other mod-
els.

Architecture Acc (%) Params (M)
ResNet18 [6] 77.40 11.68
AstroNet [5] 78.67 7.84
Ours (ResNet18) 78.82 7.52
ResNet50 [6] 80.27 26.11
AstroNet [5] 81.38 9.25
Ours (ResNet50) 81.50 8.15

Table 12. Experiments on classification with different methods on
Mini-ImageNet. With the same settings, compare networks con-
structed by our G-N model and other models.

Architecture Acc (%) Params (M)
ResNet18 [6] 51.85 11.21
AstroNet [5] 52.56 7.62
Ours (ResNet18) 54.02 7.28

widely used in the field of few-shot learning, which contains
100 classes with 600 images per class, in which the first 500
images are selected from each category for training and the
remaining 100 images for testing in our experiments.

The experimental results of our method on Mini-
ImageNet are shown in Tab. 12. Our GliaNet using
ResNet18 as NM achieves the highest accuracy on Mini-
ImageNet and outperforms AstroNet by 1.46% in accuracy.
Our method reduces the capacity of ResNet18 by 35.06%.
This proves that Glia modulates the NM communication,
which allows our GliaNet to have a good generalization per-
formance.

3.6. More Visualization Results

We show more visualization results compared with As-
troNet [5] on image classification on CIFAR10 and image
segmentation on COCO to demonstrate the effectiveness of
our method.

Fig. 6 shows more details of our visualization results on
CIFAR10. Compared with the AstroNet, which is the ar-
tificial Astrocyte-Neuron model-based network. Our Glia-
Neuron model based-GliaNet allows NM to better focus on
target regions on input images, and to avoid distractions
from the surrounding environment. For example, the im-
age labeled ‘Deer’ in the 5th row of Fig. 6 contains antlers,
our method notices this detail. The image labeled ‘Horse’
in the 6th−7th rows contains riders and horses, our method
pays better attention to the target region, i.e., the horse.

Fig. 7 shows our qualitative segmentation comparison
against AstroNet backbones, confirming our benefit. From



(a) Input (b) Standard (c) AstroNet (d) Ours

Figure 6. We illustrate the NM’s (ResNet18 on CIFAR10) attention
on the input image with ResNet18 without Glia, the AstroNet and
our method. From the 1st − 4th rows, the labels are ‘Airplane’,
‘Deer’, ‘Truck’, and ’Cat’.

the 1st − 6th rows, we need to segment out ‘Man and Surf-
board’, ‘Cat’, ‘Sheep’, ‘Airplane’, ‘Cow’, and ‘Bear’, re-
spectively. Compared with the AstroNet, we predict bound-
aries more accurately. For example, for the segmentation
of ‘Cat’, we segment the contours of the cat’s ears and the
chair more finely, and for the segmentation of ‘Man and
Surfboard’, we more accurately segment the contour of the
man and Surfboard.
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