Learning from Streaming Video with Orthogonal Gradients

Supplementary Material

This document provides additional materials including im-
plementation details, analysis, ablation studies, and addi-
tional results that support the main paper.

6. More Implementation Details

The implementation details of three scenarios from the main
paper Section 4 are shown in Table 4, Table 5 and Table 6.

DoRA Pretrain  Linear probe
architecture ViT-S/16 ViT-S/16
embedding dim |384 384
# heads 6 6
# blocks 12 12
encoder out_dim | 65536 N/A
dataset WTenice ImageNet
# local crops 6 N/A
# global crops |2 N/A
# input frames |8 N/A
input fps 1 N/A
input resolution |224 x 224 224 x 224
learning rate 0.0005 0.01
Ir schedule Warmup + Cosine Warmup + Cosine
optimizer N/A (varied) SGD, m=0.9
weight decay [0.04 — 0.4 0
learnable param |all last layer
total batch size |32 clips 512 images
# epochs 1 100

Table 4. Implementation details of the DoRA experiments in the
main paper Section 4.1.

7. More Analysis on the Orthogonal Optimizer

This section provides more analysis to have a deep un-
derstanding about the orthogonal optimizer, in particular
Orthogonal-AdamW.

Alternative Option: Downscale Learning Rate. Based
on the main paper Figure 2 and Equation 4, readers might
question whether the orthogonal optimizer is effectively us-
ing a smaller learning rate. We experiment with an alter-
native design choice that indeed reduces the learning rate
based on gradient similarity. For example, one can re-scale
the learning rate based on the similarity between the current
and the previous gradient. Formally it can be written as,

A=1-cos (gt gi—1) € [0,2]
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VideoMAE Pretrain Lineat/Attn probe
architecture ViT-B/16 ViT-B/16
embedding dim | 768 768
# heads 12 12
# blocks 12 12
dataset K400 /SSV2 SSv2
mask ratio 0.9 N/A
# input frames |16 16
input fps 12 12
input resolution | 224 x 224 224 x 224
learning rate 0.0003 0.0003
Ir schedule Warmup + Cosine  Warmup + Cosine
optimizer N/A (varied) AdamW
weight decay  [0.05 0
learnable param | all linear layer / attn block
total batch size |512 clips 32 clips
# iterations 260k 40k

Table 5. Implementation details of the VidleoMAE experiments in

the main paper Section 4.2.

Future prediction
architecture ViT-L/16
embedding dim | 1024
# heads 16
# blocks 24
dataset Ego4d / ScanNet
# input frames 4
input fps 30
input resolution 224 x 224
# output frames |4
prediction At 0.64s
learning rate 0.0001
Ir schedule Warmup + Cosine
optimizer N/A (varied)
weight decay 1x107°
learnable param |all
# steps per update | 16
# iterations 540k

Table 6. Implementation details of the Future prediction experi-
ments in the main paper Section 4.3.

where 7 is the learning rate and X is the gradient multiplier.
From the practical observation (e.g. the main paper Figure
3), we notice that cos (g¢, g¢+—1) is mostly positive, there-
fore the learning rate multiplier A mostly has a value within
[0, 1], having an effect of reducing the learning rate.

We apply the learning rate scaling method in Eq 5 to
the AdamW optimizer, and name this variant as ‘Slower-



Ego4D: MSE] / PSNR*T
optimizer in-s. out-of-s.

AdamW 0.034/159 0.026/16.8
Slower-AdamW 0.033/16.0 0.025/17.1
Orthogonal-AdamW | 0.031/16.4 0.023/17.6

Table 7. Additional results on the future prediction task. The ‘in-
s and ‘out-of-s.’ denote in-stream results and out-of-stream re-
sults respectively, as same as the main paper Table 3.

AdamW’. The experimental results are shown in Table 7.
The results show that the proposed Orthogonal-AdamW
clearly outperform Slow-AdamW on both the in-stream
and out-of-stream settings. Reducing learning rate as in
‘Slower-AdamW’ would avoid over-optimizing along one
gradient direction, but it is insufficient to actually learn the
new signals from correlated gradients. This result highlights
that our method is different from only changing the learning
rate based on the similarity between consecutive gradients.

seq. video processing BS optimizer LP 1 Attn
batch-along-time 512 AdamW 16.4 46.1
batch-along-time 512 Orthogonal-AdamW |18.4 48.0
batch-along-time 256 AdamW 19.0 47.8
batch-along-time 256 Orthogonal-AdamW |19.9 47.7
batch-along-time 128 AdamW 20.0 49.2
batch-along-time 128 Orthogonal-AdamW [18.7 47.9
batch-along-video 512 AdamW 9.5 303
batch-along-video 512 Orthogonal-AdamW (10.4 32.6
batch-along-video 256 AdamW 83 257
batch-along-video 256 Orthogonal-AdamW [13.2 37.6
batch-along-video 128 AdamW 17.1 41.6
batch-along-video 128 Orthogonal-AdamW |18.3 44.0

Table 8. Effect of batch size on VideoMAE pretrained on SSV2
and evaluated on SSV2, using the same setting as the main paper
Table 2. The ‘BS’ denotes Batch Size.

Impact of the Batch Size. The calculation of orthogonal
gradients highly depends on the size of the mini batch. We
analyze the impact of batch size on VideoMAE pretrain-
ing task on SSV2. The experimental results are shown in
Table 8. Note that when reducing the batch size, we propor-
tionally increase the number of training iterations to ensure
each experiment is trained on the same number of samples.
For example, comparing with BS = 512, the experiments
using BS = 256 and BS = 128 are trained with 2x and 4 x
longer training schedules.

The experimental results show a few interesting trends.
First, the absolute performance of ‘batch-along-time’ strat-
egy does not change much with different batch sizes, and
the Orthogonal-AdamW outperforms AdamW on larger

batch sizes (512, 256), but underperforms AdamW on
smaller batch size (128). Second, the VideoMAE trained
with ‘batch-along-time’ strategy generally performs better
with smaller batch size, and the Orthogonal-AdamW clearly
outperforms AdamW on this setting.

Impact of the Momentum Parameter. In the main pa-
per Equation 3, we introduce a hyper-parameter /3 control-
ling the update rate of the momentum. We experiment with
different 5 values in Table 9. Generally, a large value of
[ (close to 1.0) leads to a ‘smoother’ momentum value; a
lower value of 3 (close to 0.0) makes the momentum more
fluctuate and less robust to noise, as the current value has
large impact to the momentum. At the extreme case when
B = 0, it means the momentum is not used. In our case, it
means the orthogonal gradient is computed w.r.t. the pre-
vious gradient. The results in Table 9 shows that 5 > 0.9
works well, and there is almost no difference using 0.9 or
0.99. By default, we use 5 = 0.9 in the main paper experi-
ments.

Orthogonal-AdamW | Ego4D: PSNRtT
153 in-s. out-of-s.
0 16.1 17.1
0.5 163 174
0.9 164 17.6
0.99 164 17.6

Table 9. Impact of the momentum parameter in Orthogonal-
AdamW. This is a future prediction task on Ego4D-Stream, as
same as the main paper Table 3.

optimizer ‘ ImageNet top171
AdamW [11] 77.9
AdamW (repro) 77.8
Orthogonal-AdamW |76.5

Table 10. ImageNet classification results with ViT-B/16 architec-
ture. The models are trained from scratch following the recipe in
the original ViT paper [11]. Note that the first row is the official
ViT result from [11]. ‘repro’ means our reproduction.

8. Does it Work on ImageNet Classification?

In the main paper Section 4, we have shown the Orthogonal-
AdamW outperforms AdamW on various self-supervised
video learning scenarios, even on shuffled video clips
(VideoMAE results in the main paper Table 2). Naturally,
we would like to know if the orthogonal optimizer can be
applied to general supervised learning tasks. In this sec-
tion, we compare Orthogonal-AdamW with AdamW on the
classic ImageNet classification task. Results are shown in



Table 10. We use a ViT-B/16 architecture and follow the
training recipe from [11]. First, our reproduction matches
the reported ViT performance on ImageNet (77.8 vs 77.9).
Second, we find the Orthogonal-AdamW underperforms
AdamW by 1.3% on this task. It is probably because Im-
ageNet mini-batches follow IID distributions more closely,
and the gradients from consecutive batches have negligible
correlation. In this case, optimizing the orthogonal gradi-
ents does not bring informative learning signals.
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