
Towards Lossless Implicit Neural Representation via Bit Plane Decomposition

Supplementary Material

1. Theory
The specific theorems presented in [16] are as follows:

Theorem. (The implicit ANN approximations with described
error tolerance and explicit parameter bounds by Jentzen
et al. [16], Proposition 4.3.8, Corollary 4.3.9) Let d 2 N,
L, a 2 R, b 2 [a,1), ✏ 2 (0, 1] and function f satisfy for
8x, y 2 [a, b]d that |f(x)� f(y)|  Lkx� yk1,

Then there exist f✓ that satisfy :
1. It holds the Upper Bound on Network Error:

sup ||f✓(x)� f(x)||1  ✏
2. Upper Bound on Number of Layers:

d(log2(max{ 3dL(b�a)
2 , 1}) + log2(✏

�1)) + 2
3. Upper Bound on Number of Channels of each layer:

✏�dd(3 (3dL(b�a))d

2i + 1)
4. Upper Bound on Network Parameters:

✏�2d9(3dmax{L(b� a), 1})2dd2

In this section, we provide a brief proof of the theory. We
also demonstrate C in our setup. Note that Tab. 1 shows all
notations for the main paper and Tab. 2 shows notations for
supplementary material.

1.1. Proof of Sec. 1
According to Jentzen et al. [16], the proof of the theorem
is derived as follows. The proof proceeds by designing a
function that satisfies the Proposition 1, substituting the L1
distance and maximum value approximated by the ANN,
and then generalizing a distance to an arbitrary number. For
brevity, we provide a summarized outline of the proof. For
a rigorous mathematical proof, please refer to the original
document.

Proposition 1. Let (E, �) be a metric space and L 2 [0,1),
? 6= M ✓ E, and f : E ! R that satisfy 8x 2 E, y 2 M
s.t. |f(x) � f(y)|  L�(x, y). Let F : E ! R [{1} for
all x 2 E that

F (x) = sup
y2M

[f(y)� L�(x, y)].

Then, it holds 8x 2 E that

|F (x)� f(x)|  2L[inf
y2M

�(x, y)].

Let the notation AW,b indicates an affine transforms with
weight (W) and bias (b), and Td,K indicates an ANN that
satisfies Td,K(x) = [xT ,xT , · · ·xT]T| {z }

K

with d,K 2 N. With

ReLU activation, L1 distance is represented by 2-layer MLP
as below:

Definition 1. Let weights (W(1,2)) and bias (b(1,2)) of the
affine transform be as follows:

W(1) :=


1
�1

�
b
(1) :=


0
0

�
,W(2) :=

⇥
1 1

⇤
b
(2) :=

⇥
0
⇤
.

(2)

8x 2 R, the ANN L1(x) = |x| is defined as below:

L1(x) :=AW(2),b(2)(�(AW(1),b(1)(x))), (3)

where, �(x) := max(x, 0). (4)

Then, 8x 2 Rd and d 2 N , the ANN Ld(x) = ||x||1 is
defined as below:

Ld(x) :=AW(2)
d ,b(2)

d
(�(AW(1)

d ,b(1)
d
(x))), (5)

where W(1)
d

2 R2d⇥d,W(2)
d

2 R1⇥2d,b(1)
d

, and b
(2)
d

are as
below:

W(1)
d

:= Ed ⌦W(1) =

2

6664

W(1) 0 · · · 0
0 W(1) · · · 0
...

...
. . .

...
0 0 · · · W(1)

3

7775
,

(6)

W(1)
d

:= [1, 1, · · · , 1]| {z }
2d

b
(1)
d

= ~0 2 R2d
b
(2)
d

= [0] (7)

where E is an identity matrix and ⌦ is Kronecker product.

We denote Pd(·, ·, ...) as d-parallel of ANNs and • as se-
quential of ANNs. Likewise, the definition of the maximum
value is defined as below:

Definition 2. Let weights (W(1,2)) and bias (b(1,2)) of the
affine transform be as follows:

W(1) :=

2

4
1 �1
0 1
0 �1

3

5b
(1) :=

2

4
0
0
0

3

5 , (8)

W(2) :=
⇥
1 1 �1

⇤
b
(2) :=

⇥
0
⇤
. (9)

8x = [x1, x2]T 2 R2, the ANN M2(x) = max{x1, x2} is
defined as below:

M2(x) :=AW(2),b(2)(�(AW(1),b(1)(x))), (10)

Then, Md for d 2 N \ [3,1] is defined as follow:

Symbol Definition Description Example/Meaning/Note
d 2 N Dimension of Function (Signal) or Vector d = 2 for an Image
n 2 N Bit Precision a Ground Truth Function n = 8 for an 8-bit (uint 8) Image
k 2 div+(n) Bit Precision a Represented Function Control Variable in Tab. 3
i 2 N \ (0, n

k
] Index of a Quantized Function i = {0, 1, 2, 3} in case of n = 8 and k = 2

H,W,C 2 N Height, Width, Channels of Function
L 2 R Lipschitz Constant Details in Sec. 1
✏ 2 R Error (or distance) Quantization Error in our paper
x 2 (X ✓ Rd) Input Vector of a Function
I 2 RH⇥W⇥C Analog C-channel Image

In,Qk 2 Q
H⇥W⇥C
n , Q

H⇥W⇥C

k
Digital n-bit (or k-bit) C-channel Image n = 8, 16 for images

B 2 {0, 1}H⇥W⇥C Bit-plane of an image In case of Qk=1

W 2 Rdout⇥din Weight Matrix (Trainable Parameters) nn.Linear.weight (Pytorch)
b 2 Rdout Bias Vector (Trainable Parameters) nn.Linear.bias (Pytorch)
✓ 2 {⇣M�1

i=0 (Rdout⇥din ,Rdout)}(:= ⇥) Trainable Parameters of M -Layer MLP and its Set
� := 1

dindout
||W||1 Scaling Factor for a Weight Quantization

� := ||x||1 Scaling Factor for an Activation Quantization
C := 9 · (3dmax{L(b� a), 1})2d · d2 Coefficient of Ud(n) Details in Sec. 1

[a, b] := {x 2 R|a  x  b} Domain of a function a, b satisfy (a, b 2 R, a  b)
Qn ⇢ Q \ [0, 1] Codomain (or Range) of a Digital Function Qn = {0, 1

3 ,
2
3 , 1} in case of n = 2

[Q
(i)
k

]j
i=0

⇣j

i
Q

H⇥W⇥C

k
Sequence a Quantized Function LSBs to MSBs as i increased

[B
(i)
k

]j
i=0

⇣j

i
{0, 1}H⇥W⇥C

k
Sequence a Bit-Plane LSB to MSB as i increased

f, h Rd ! Rk Analog function k = 1 in Sec. 3.1 of main paper.
fn, hn Rd ! Q

k
n Digital function with n-bit precision

f✓, h✓ Rd ! Rk Function that parameterized with ✓ Implicit Neural Representation (INR)
Qn(·) Rd ! Q

d
n, x̂ 7! argminx2Qn ||x� x̂||1 n-bit Quantization Element-wise operation for vector inputs

P(·) ⇥! N Number of Parameters of a Neural Network
✏(·) N! R, n 7! 1

2(2n�1) Upper bound of a quantization error with given n

Ud(·) N! N n 7! C(2n+1 � 2)2d Upper bound of a P with given n and d

c(·) ' (·) Prediction to (·) Applied to elements or functions

Table 1. Notation table for the main paper (Elements, Sets, and Functions (calculations), respectively)

Md =

(
Mk •Pk(M2,M2, · · · ,M2) d = 2k

Mk •Pk(M2,M2, · · · ,M2,E1) d = 2k � 1

(11)

Md satisfy 8x = [x1, x2 · · · , xd]T 2 Rd, Md(x) =
max{x1, x2, · · · , xd}

Then maximum convolution is represented with an ANN
�(·) as follow:

Proposition 2. Let d,K 2 N, L 2 [0,1), xk 2 Rd, and
y = [y1, y2, · · · yK] 2 RK . Then the ANN � defined as
below:

� =MK •A�L·EK ,y •PK(Ld •AEd,�x1 ,Ld •AEd,�x2 ,

· · ·Ld •AEd,�xK) • Td,K .

� holds 8x 2 Rd,

�(x) = max
k2{1,2,···K}

(yk � L||x� xk||1). (12)

Then with Propositions 1 and 2, the ANN approximation
follows:

Proposition 3. Let d,K 2 N, L 2 [0,1), xk 2 E ✓ Rd.
Let f : E ! R satisfies 8x1,2 2 E, |f(x1) � f(x)| 
L||x1�x2||1. Let y = [f(x1), f(x2), · · · , f(xK)]T and �

is defined as Proposition 2. Then,

sup
x2E

|�(x)� f(x)|  2L[sup
x2E

(min
k

||x� xk||1)] (13)

The proof of the Sec. 1.1 accomplished by substitution of
Proposition 1 to Proposition 2. Generalizing Eq. (13) com-
plete the proof. Let C(E,�),r is r-covering number of (E, �).
Then,

C([a,b]d,||·||p),r  (d
d
1/p(b� a)

2r
e)d 

(
d(b�a)

r
)d (r <

d(b�a)
2)

1 (r � d(b�a)
2)

(14)

Lemma 1. Let d,K 2 N, L 2 [0,1), a 2 R, b 2 (a,1),
f : [a, b]d ! R satisfies 8x1,2 2 [a, b]d, |f(x1)� f(x)| 
L||x1 � x2||1. And let F = A0,f([(a+b)/2]d) Then,

sup
x2[a,b]d

|F(x)� f(x)|  dL(b� a)

2
. (15)

The inequality is derived by substituting x1 = [(a+b)/2, (a+
b)/2, · · · , (a+ b)/2]T in |f(x1)� f(x)|  L||x1 � x2||1.

Symbol Definition Description Example/Meaning/Note
m 2 Q24 Mantissa x = m⇥ 2e

e 2 Q8 Exponent
m 2 QL

24 Mantissa Tensor with L length
e 2 QL

8 Exponent Tensor with L length
O 2 RL Floating point audio signal with L length O = m⇥ 2e

Ed 2 Rd⇥d Identity matrix E2 =


1 0
0 1

�

Wd Rdout⇥din Weights for ANNs Used for Definition 1 and Definition 2
bd Rdout Bias for ANNs Used for Definition 1 and Definition 2

C(E,�),r min({n 2 N0 : [9A ⇢ E : ((|A|  n)^
(8x 2 E : 9a 2 A : �(a, x)  r))]} [{1}) Covering numbers r-convering number of (E, �)

(E, �) - Metric Space Set E and its metric �

M ✓ E Subset of E
N 8� A set of ANNs

� E ⇥ E ! [0,1) Metric on E
Satisfy positive definiteness, symmetry,
and triangle inequality

AW,b Rdin ! Rdout , x 7!Wx+ b Affine transform
�(·) Rd ! Rd

, x 7! max{x, 0} ReLU Activation function Applied for each elements of x
� Rin ! Rout Artificial Neural Networks In Sec. 1, range is constrained to R
Ld Rd ! R ||x||1 representation with ANN (Definition 1) 2-layer
Md Rd ! R max{x} representation with ANN (Definition 2) An unique
Td,K Rd ! RKd, x 7! [xT

,x
T
, · · ·xT]T K-times repetition of x with ANN

P(·, ..., ·) ⇣K�1
i=0 N! N Parallel of K ANNs

(·) • (·) N⇥N! N Sequence of ANNs �2 •�1(x) = �2(�1(x))
(·)n=k - Functions with k-bit precision f✓,n=2 indicates an INR with 2-bit precision
(·)⇤ INRs satisfy Eq. (5) f

⇤
✓,n=4 indicates lossless INR with 4-bit precision

Table 2. Notation table for the supplement material (Elements, Sets, and Functions (calculations), respectively)

Proposition 4. Let d 2 N, L 2 [0,1), a 2 R, b 2
(a,1), r 2 (0, d/4), f : [a, b]d ! R satisfies 8x1,2 2
[a, b]d, |f(x1) � f(x)|  L||x1 � x2||1. Let xk 2 Rd,
and y = [y1, y2, · · · yK] 2 RK and let K satisfy K =
C([a,b],||·||1),(b�a)r, supx[mink ||x� xk||1]  (b� a)r and
y = [f(x1), f(x2), · · · , f(xK)]T and � is defined as
Eq. (12). Then it holds

sup
x

|�(x)� f(x)|  2L(b� a)r (16)

This is derived by Eq. (13) and assumption.

Then generalizing the function with the proposition as
follows:

Proposition 5. Let d 2 N, L 2 [0,1), a 2 R, b 2
(a,1), r 2 (0,1), f : [a, b]d ! R satisfies 8x1,2 2 [a, b]d,
|f(x1)� f(x)|  L||x1 � x2||1. Then there exists an ANN
� s.t.

sup
x

|�(x)� f(x)|  2L(b� a)r (17)

The definition of covering number and K =
C([a,b],||·||1),(b�a)r < 1 ensure that there exist xk 2 [a, b]d

s.t.
sup
x
[min

k

||x� xk||1]  (b� a)r (18)

Without loss of generality, L(b�a) 6= 0 the main theorem is
thus complete by Proposition 5 by adjusting r. In conclusion,
reducing the bit-precision of a digital signal is equivalent

to increasing r, i.e., reducing C. The number of layers and
parameters is then derived by calculating the number of
parameters in Definitions 1 and 2.

1.2. Hyperparameter
The most important factor that determines C is the Lipschitz
constant L. The constant L represents how ‘smooth’ the
signal is in a discrete setting. In discrete spaces, computing
L is known to be an NP-hard problem. However, it can be
estimated under various assumptions. Specifically, since
L satisfies the inequality below, where 1) x, y 2 [a, b]d

are fixed-size discrete domains, and 2) f(x) 2 [0, 1], it is
possible to estimate its upper bound.

Therefore, the term C in the main text is given by

C = 9 · (3dmax{L(b� a), 1})2d · d2, (19)

where a and b are the same as in previous studies, i.e., -1
and 1, d varies depending on the shape of the signal (Audio,
Image or Video, etc.). The Lipschitz constant L changes
according to the domain size and the signal derivative. For
the 256⇥ 256 images used in the experiments, with a range
of [0,1], the Lipschitz constant must satisfy 256  L for all
arbitrary signals.

2. Quantized Representation
Details for hypothesis Validation In this section, we pro-
vide a detailed schematic diagram of Validation of the ex-
periment section to avoid confusion and provide additional

Figure 1. Schematic diagram of the parallel model used for the
validation in the experiment section. f✓,n=k indicates INRs that
require k-bit precision with a given parameter ✓.

analysis. The quantized representation is a generalized form
of our main paper’s bit-plane decomposition. We use a
model without a bit axis for a fair comparison with SIREN.

Let n-bit images be In = Qn, where Q
(i)
k

2 QH⇥W⇥3
k

.
Images are represented as fn=8 : R2 ! I8 or fn=16 :
R2 ! I16 for 8-bit and 16-bit, respectively. A bit-plane
decomposition method reduces d to its divisor k, i.e., k 2
div+(n) , thereby reducing Ud(n). Instead of n-bit images,
we parameterize a quantized set of images. Then quantized
images ([Q(i)

k
]
n
k �1
i=0 := [Q(0)

k
, · · · ,Q(n

k �1)
k

]) is a sequence
that satisfies:

In =
1

2n � 1

n
k �1X

i=0

(2k)iQ(i)
k
. (20)

Specifically, when Q
(i)
k=1, it is bit-plane B and it is the

method of our main paper. We present example images
of Q,B, and I in Fig. 2.

The validation experiment for our hypothesis is represent-
ing an n-bit signal is employing n

k
parallel sequence of INRs

i.e. :

[Q(0)
k

, · · · ,Q(n
k �1)

k
] ' [f (0)

✓,k
, · · · , f (n

k �1)
✓,k

] (21)

Q
(i)
k
(x) ' f (i)

✓,k
(x) (22)

We denote each INR as fn=k, meaning the INR with k-
bit precision. Further, f⇤

k
indicates an INR that satisfies

Q
(0)
1 (= B

(0)) Q
(1)
1 Q

(2)
1 Q

(3)
1

Q
(4)
1 Q

(5)
1 Q

(6)
1 Q

(7)
1

Q
(0)
2 Q

(1)
2 Q

(2)
2 Q

(3)
2

Q
(0)
4 Q

(1)
4 Q

(0)
8 (= I8)

Figure 2. Quantized representations depending on k-bit precision.

the required k-bit precision. Note that f✓,n=8 indicates the
baseline SIREN model. Since we set all parameters to have
identical numbers, increasing the threshold of error (✏(n)) is
identical to bringing closer to the upper bound Ud(n). For
example, the second row of Fig. 1 indicates two models that
require 4-bit precision and predicting 4-MSBs and 4-LSB
([Q(0)

4 ,Q(1)
4]). All evaluation follows the equation below:

In(x; ✓|k) =
1

2n � 1

n
k �1X

i=0

(2k)iQk(f̂
(i)
✓,n=k

(x)). (23)

Eq. (23) is a generalized form of the equation of the main pa-
per. We provide pseudocode, Algorithm 1 and Algorithm 2
for each method bit-plane decomposition and quantized rep-
resentation, respectively.

3. Bit Bias & Spectral Bias
Our observation, Bit Bias, is highly correlated to the Spectral
Bias; however, it is not identical. Fig. 3 provides visual infor-
mation about the difference between Bit-Bias and Spectral-
Bias. In Fig. 3a, we perform a Fourier transform on a single
image and divide the frequencies into 8 bins, i.e., masking.
After applying masking, we perform an inverse transform
to obtain the resulting images. It shows the distribution of
high-frequency components in the spatial domain, showing

Im
ag

es
Sp

ec
tra

Low Frequency High Frequency
(a) Frequency-based image decomposition and its spectrum

Im
ag

es
Sp

ec
tra

MSB LSB
(b) Bit-plane image decomposition and its spectrum

Figure 3. Frequency-based decomposition (Fig. 3a) and bit-plane-based decomposition (Fig. 3b).

Fr
eq

ue
cy

(a) 16bit bit-wise bias test image (b) Underfitted Image of Fig.4a (c) Waveform in the bit-axis

Figure 4. The sample image for the Bit-wise bias experiment (Fig. 4a). The image includes different bit-frequency. The Fig. 4c indicates
waveforms of signals with different bit-frequency.

Algorithm 1 Bit-Plane Decomposition Algorithm
1: Input: image (tensor), bits (integer)
2: Output: bit_planes (list)
3: function BIT_DECOMPOSITION(image, bits)
4: bit_planes [] . Initialize an empty list
5: for i = 0 to bits - 1 do
6: bit_planes.append(image % 2)
7: image image // 2 . Integer division by 2
8: end for
9: return bit_planes . Return bit-planes

10: end function

that high frequencies are concentrated in the wing’s patterns.
In Fig. 3b, we present bit-planes. For example, deter-

mining LSB possesses high-frequency components. This

corresponds to a problem of determining whether each pixel
value is even or odd, which is equivalent to a Bernoulli distri-
bution with a probability of 0.5. High-frequency components
are indeed present. However, these high-frequency compo-
nents do not always exist in the LSB alone. The spectrum
in Fig. 3b shows that high-frequency components are also
significantly present in the MSBs.

4. Details for Bit-Spectral bias experiment
Fig. 4 includes the image and its under-fitted prediction
for the bit-spectral bias experiment. Extracting and com-
paring values with different bit frequencies from natural
images is unsuitable because there are many variables, such
as the spatial frequency of the image or surrounding pix-

Algorithm 2 Quantized Representation Algorithm
1: Input: bit_planes (list), bits (integer)
2: Output: Quantized Representations
3: function PARTIAL_COMPOSITION(bit_planes, bits)
4: basis 2torch.arange(0,bits) . Calculate basis
5: n 2(bits) � 1 . Normalize term
6: iters len(bit_planes)//bits - 1
7: res [] . Initialize an empty list
8: for i = 0 to iters do
9: part bit_planes[i:i+bits]

10: part part * basis . Multiply Bit Weight
11: part part / n . Normalize to [0,1]
12: res.append(part)
13: end for
14: return res . Return computed value
15: end function

Figure 5. Quantitative ablation study on activation function. Verti-
cal dashed lines indicate the iterations when each model achieves
lossless.
els. Therefore, we control variables using the Fig. 4a and
experiment with different bit frequencies for each part as
an experiment variable. Fig. 4c illustrates the waveform
and binary representation of each pixel value based on bit-
spectral frequency. Fig. 4b shows the qualitative result of
bit-spectral bias that high-frequency values, such as 43,690
(=10101010101010102) or 21,845 (=01010101010101012),
are hard to fit.

5. Activation
We conduct ablation studies for the activation and loss func-
tion of the proposed method, as shown in Fig. 5. We utilized
a 16-bit sample image in the TESTIMAGE dataset [2] and
reduced the parameter count to observe convergence speed.
We adopt periodic activation function [37] for fast conver-
sion. To support this, we set the activation function as the
controlled variable in Fig. 5. In Fig. 5, the Gauss activation
[32] converged slower than other baselines. Fig. 5 indicates
that our method achieved lossless implicit representation
with a sufficient number of iterations and parameters, regard-

less of the activation function used.

6. Application Implementation Details
6.1. Ternary Implicit Neural Representation
We detach bias terms in each affine linear layer for a lighter
INR. Representing lossless complex images with networks
consisting only of sums and differences is challenging. Un-
like the image representation with full-precision parameters,
the parallel network has been implemented. We train each
1.58-bit INR from scratch per bit plane. The upper bound
Ud(n) remains identical for 16-bit images. However, net-
works with limited precision have challenges due to the
3-dimensional complexity. The network to represent each
bit-plane includes a 5-layer with 256 hidden channels. We re-
place sinusoidal activations with Gaussian Error Linear Unit
(GELU) activation [15] following the prior works [23, 45].
The total number of iterations is 200K, with a learning rate
scheduler decayed by a factor of 0.01 every 20K steps.

6.2. Lossless Compression
We conduct experiments using the MNIST and Fashion
MNIST datasets. We selected 1,000 images for training
and 100 images for testing. The network architecture fol-
lows RECOMBINER, with two main differences: it uses 3D
coordinates as input and outputs the result using BCE Loss.
The network consists of 3-layer MLP with 64 channels and
sine activations.

7. Floating Point Representation
Our method is concentrated on presenting signals with a
fixed bit-precision. However, following the standard format
of the floating point representation, we expand our method
to represent floating point (FP) representation. The straight-
forward approach is converting the numbers into binary num-
bers directly and aligning them to the longest bit length. We
utilize the definition of floating-point representation. The
floating number is formulated as below:

x = m⇥ 2e, (24)

where m 2 Q24 indicates a mantissa and e 2 Q8 indicates
an exponent including a sign. Note that the range of m
depends on the normalization method. The audio fitting
experiment further supports the robustness of our approach.
Audio has lower spatial complexity than an image but de-
mands more bits. We serialize information, including signs
for estimation and recombine them as below:

O
⇤
✓
(x) =

31X

i=8

Q1(m✓,n=1(x, i))⇥ 2
P7

i=0 Q1(e✓,n=1(x,i)),

(25)

TE
ST

IM
A

G
ES

[2
]

TE
ST

IM
A

G
ES

[2
]

K
od

ak
[1

0]
K

od
ak

[1
0]

SIREN [37] DINER [46] FINER [22] Ours++ GT

Figure 6. Qualitative comparison of under-fitted images (# of Iterations : 200) in 512⇥512 images.

where m✓,n=1 and e✓,n=1 are predicted mantissa and ex-
ponent, respectively. O indicates a FP32 audio signal. We
estimate each part using a single network; however, sepa-
rate notations are needed to avoid confusion, i.e., f✓(x, i) =
[m✓(x, i); e✓(x, i)].

8. Additional Results
Extended Model In the main paper, we employed sinusoidal
activations for generality; however, INRs with enhanced ex-
pressiveness perform more efficient results. Inspired by
recent methods, we present a more efficient approach for
accelerating the convergence of our INRs than using sinu-
soidal activations alone, as in the main paper. We utilize a
hash-table [46] and modified sinusoidal activations [22]. We
notate the method as ‘Ours++’. This offers the following
advantages: 1) faster convergence, 2) increased capacity for
representable samples.

We conduct 2D image fitting experiments on 512⇥512

Method SIREN [37] DINER [46] FINER [22] Ours
Iterations (#) 400 193(±72)
TESTIMAGES [2] 36.51 30.98 38.71 1
Kodak [10] 32.91 32.85 34.31 1

Table 3. Quantitative comparison on 512 ⇥ 512 image fitting
with existing INR methods. The iteration number of our methods
indicates ‘mean(±std)’ for the total dataset.

Kodak [10] TESTIMAGES [2]
#Iter.(#) PSNR (") #Iter.(#) PSNR (")

SIREN + Ours 790 1 3450 1Ours++ 180 214

Table 4. Quantitative comparison results of Ours++ with our
method in the main paper. The experiment has been conduct on
256⇥ 256 resolutions
images which is a larger resolution than our main paper.
Fig. 6 show that our method converges faster than other
approaches while preserving details. Tab. 3 demonstrates
that the applied method converges much faster while achiev-
ing lossless representation. Additionally, Tab. 4 shows that

(a) Activations

(b) High-dimensional input
Figure 7. Comparison of training curve. Vertical dashed lines indicate the iterations when our models achieve lossless.

Bits Per sub-Pixel (bpsp)(#) TESTIMAGES[2]
TIFF [29] 16.0017
JPEG2000 [42] 12.4021
PNG [33] 14.0001
Ours++ 10.4411

Table 5. Quantitative Comparison for lossless compression on 16-
bit images.

Experiment Group SIREN [37] Ours
Bit-precision (n) 1 2 4 8 1
#Params. (M) 1.311 1.322 1.318 1.316 1.316
Mem. (MB) 14.17 14.17 14.16 14.15 14.18
FLOPs (M) 1.303 1.316 1.314 1.313 10.51
Time (ms) 3.116 1.823 0.922 0.771 0.761

Table 6. Comparison of computational resource usage (parameters,
memory, FLOPs, and time) among SIREN [37] and our method for
bit-precision settings.

Time(ms)
RECOMBINER [14] 0.455
RECOMBINER + Ours 0.876

Table 7. Decoding time for a single image used in the compression.

‘Ours++’ converges faster than the method in the main paper.
Training Curve In Fig. 7, we provide additional training
curves that could not be included in the main text due to
space constraints. These curves illustrate trends when com-

bined with each model: high-dimensional inputs (Fig. 7b)
and activations (Fig. 7a).
Lossless Compression We observed that the hash table gen-
erated by our method (Ours++) has low entropy, making it
highly suitable for compression. Tab. 5 present a quantitative
result on compressing 16-bit images. We applied quantiza-
tion to the hash table, followed by entropy coding. Despite
the challenges of compressing 16-bit images, this approach
outperforms traditional codecs, demonstrating superior per-
formance.
Computational Complexity In Tab. 6, we present a com-
parison of the computational resources including a SIREN
[37] and our experiment group in Tab. 3 of the main paper.
FLOPs and time are reported for all models based on the
computation of a single pixel. Our method requires FLOPs
proportional to the bit depth linearly, but memory usage and
computation time remain nearly unchanged. Due to the par-
allel processing nature of GPUs, the computation time shows
marginal differences. In Tab. 7, We show a decoding time
for a single image used in the compression, demonstrating
marginal differences.

	Introduction
	Related Work
	Method
	Preliminary
	Problem Formulation
	Methodology

	Experiments
	Implementation Details
	Image Representation
	Bit & Bit-Spectral Bias
	Applications

	Discussion
	Conclusion
	Theory
	Proof of theorem:main
	Hyperparameter

	Quantized Representation

	Bit Bias & Spectral Bias
	Details for Bit-Spectral bias experiment
	Activation
	Application Implementation Details
	Ternary Implicit Neural Representation
	Lossless Compression

	Floating Point Representation
	Additional Results

