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8. More Experiments for Model Analysis

In this section, we provide additional experiments to fur-
ther analyze our framework. We remain the Area Under the
receiver operating characteristic Curve (AUC) as the evalu-
ation metric in the experiments.

8.1. Importance of Facial Components in the FCG

In Table 7, we evaluate the cross-dataset performance of the
models by excluding specific facial components from our
Face Component Guidance (FCG) mechanism. We observe
that excluding guidance for any component results in a
slight decrease in average performance. Notably, the great-
est performance drop occurs when the ‘eyes’ facial com-
ponent is excluded, suggesting it more critical than other
facial components for generalization. Consequently, we in-
clude all facial components in our FCG, as this approach
achieves the best overall performance across all datasets.

8.2. The Selection of the Target Attribute

In Table 8, we explore different target attribute γs settings
to evaluate the effectiveness of attributes to improve model
generalizability to focus on major facial parts. We can see
in the table that selecting k and q both performs well in
improving generalizability while v have a degraded perfor-
mance. We surmise this due to the design nature of q and
k in for affinity evaluations. In our experiments, we set
γs = k due to its slightly advanced performance.

8.3. Evaluation on Videos of AI Avatars

To further validate our model’s generalizability to modern
AI video generators, we collect a dataset comprising 56
videos from 28 different content creators who use Hey-
Gen5 to generate videos with their AI avatars. We eval-
uate these collected videos using our method, RealForen-
sics [13], and LAA-Net (w/ SBI) [33] for comparison. All
models are pre-trained on the FF++ dataset, and the scores
from previous works are evaluated using their official code
and model checkpoints under the default settings. Our
method achieves an AUC of 86.1%, while the RealForen-
sics method achieves an AUC of 84.9%, and the LAA-Net
(w/ SBI) method achieves only 45.4% AUC. The superior
performance of our approach compared to previous SOTA
methods further demonstrates its enhanced generalizability.

5https://www.heygen.com/

Table 7. Importance of Facial Components in FCG: We evalu-
ate the cross-dataset performance on models trained with excluded
facial components in the FCG. This experiment demonstrates the
impact of each facial parts to improve model generalization.

Method CDF DFDC FSh DFo WDF Avg.
Ours 95.0 81.8 98.1 99.6 87.2 92.3
w/o eyes 93.9 81.2 98.1 99.3 85.8 91.5
w/o nose 94.3 81.7 97.1 99.3 86.0 91.7
w/o lips 94.5 81.5 97.8 99.6 86.7 92.0
w/o skin 94.1 81.6 97.4 99.5 87.1 91.9

Table 8. Evaluation of γs Parameter: We select different γs

values in {q, k, v} to evaluate the efficacy for attributes to collect
informative facial features.

γs CDF DFDC FSh DFo WDF Avg.
γs = k 95.0 81.8 98.1 99.6 87.2 92.3
γs = q 95.1 81.5 97.8 99.2 86.7 92.1
γs = v 84.2 81.6 97.9 99.5 86.0 89.8

9. Evaluation on Modern Deepfake Techniques
Beyond comprehensive comparisons on video-based Deep-
fake detection, we also evaluate the proposed approach on
unseen novel Deepfakes, with a particular focus on recent
Diffusion models. Since the latest advancements in Deep-
fakes using Diffusion models are image-based, we adapt our
video-based framework to operate under similar conditions
by removing the temporal module and retaining only the
spatial module in the decoder block.

To ensure fair comparison, we followed the protocol
from DIRE [50] and utilize the CelebA-HQ subset from
their proposed DiffusionForensics [50] dataset, which con-
tains facial images generated by Diffusion Models (DMs).
It includes real images from CelebA-HQ [19] and fake im-
ages generated by SD-v2 [40] as the training subset, while
the testing subset further includes images generated from
IF [43], DALLE-2 [39], and Midjourney. The results of the
following experiments are reported using the Average Pre-
cision (AP) metric, expressed as a percentage.

Generalizability to Diffusion Models. In Table 9, we eval-
uate the effectiveness of our framework on images gener-
ated by novel diffusion models (DMs). In the upper sec-
tion, we assess the zero-shot capability of our framework
alongside the State-Of-The-Art (SOTA) image-based SBI
method. Both methods are pre-trained on the FF++ dataset
and evaluated on the testing subset from DiffusionForen-



Table 9. Evaluation on Novel Diffusion Deepfakes: In the upper
table, we evaluate the zero-shot capability of our framework with
the SBI. In the bottom table, we compare with methods trained on
the CelebA-HQ split of the DiffusionForensics dataset.

Method Generated face images
SD-v2 IF DALLE-2 Midjourney Avg.

SBI [44] 70.8 83.9 64.4 41.5 65.2
Ours 96.8 93.1 71.4 62.7 81.0
CNNDet [49] 99.8 82.7 33.7 69.3 71.4
F3Net [37] 99.1 84.9 69.8 87.9 85.4
DIRE [50] 100 99.9 99.9 100 100
Ours 100 100 99.8 100 100

sics. The results demonstrate that our framework exhibits
stronger zero-shot capability, outperforming the SOTA SBI
by an average of 15.8% AP. This performance can be at-
tributed to the FCG, which prevents the model from overfit-
ting to dataset-specific cues.

In the lower section, we follow the protocols of previous
methods to train and evaluate our framework on the Dif-
fusionForensics dataset. We compare our approach against
prior methods (CNNDet [49], F3Net [37], and DIRE [50])
to demonstrate its generalizability. The results in the table
show that our framework achieves performance on par with
the SOTA method (DIRE).

Robustness Towards Common Perturbations. In real-
world scenarios, images often undergo various post-
processing adjustments, making robustness to unseen per-
turbations crucial. In this section, we evaluate the robust-
ness of our framework against two types of disturbances:
Gaussian blur (σ = 0, 1, 2, 3) and JPEG compression (qual-
ity = 100, 65, 30). We follow the evaluation setup from
the previous section to assess robustness under both zero-
shot and in-domain regimes. The results are presented in
Table 10. Our model demonstrates strong robustness, with
no significant performance degradation under these pertur-
bations, particularly in the zero-shot evaluation.

10. Elaboration on Attribute Extraction
To elucidate the connection between attention attributes and
patch embeddings within the Vision Transformer (ViT) en-
coder pipeline, we detail the workflow of a typical ViT
encoder layer in Algorithm 1. Each layer accepts embed-
dings from the preceding layer as input, which encom-
passes a class embedding along with numerous patch em-
beddings. These embeddings are then processed through
a self-attention mechanism to produce output embeddings
for the subsequent layer. Initially, the class embedding is
represented by a learnable token, and patch embeddings are
formed by a distinct patch extraction layer given an image
(for further details, please see the ViT paper [10]). In the al-

Table 10. Robustness on Novel Diffusion Deepfakes: We assess
the zero-shot and in-domain robustness of our framework with SBI
and DIRE, respectively.

Method JPEG (Quality) Blur (Sigma) Avg.
100 65 30 0 1 2 3

SBI 65.2 53.5 56.3 65.2 51.3 52.9 54.2 55.6
Ours 100 79.3 76.2 100 81.5 81.1 79.2 85.3
DIRE* 100 99.8 99.8 100 99.9 99.9 99.9 99.9
Ours* 100 100 99.9 100 99.9 99.9 99.9 99.9

Algorithm 1 The workflow of the ViT transformer encoder
layer given embeddings from the previous layer.

1: Input x
2: Output emb
3: x̂← LN1(x)
4: q ←WQx̂+BQx̂ ▷ Query Transform
5: k ←WK x̂+BK x̂ ▷ Key Transform
6: v ←WV x̂+BV x̂ ▷ Value Transform
7: z ← MHSA(q, k, v) ▷ Multi-head Self-Attention
8: out←WOz +BOz
9: x′ ← x+ out

10: emb← x′ +MLP (LN2(x
′))

gorithm presented, Ws and Bs, for s ∈ {Q,K, V,O}, sig-
nify the weights and biases associated with the linear trans-
formations. LN1 and LN2 represent the layer normaliza-
tion modules. The MHSA stands for the Multi-Head Self-
Attention mechanism, which operates on the query, key, and
value embeddings of the class and patch tokens. Further-
more, the MLP (multi-layer perceptron) includes two lin-
ear layers and a GeLU activation layer. The attention at-
tributes Al,γ , where γ ∈ {q, k, v}, are extracted as speci-
fied in the cited lines 4, 5, and 6, and the extracted patch
embeddings Pl are referred to in line 10.

11. Inference Time
The average inference time of our framework on a 3-second
video is 1.5 seconds using an A5000 GPU. As our frame-
work leverages the CLIP image encoder to extract generic
features for adaptation, most of the inference time is spent in
the image encoder processing the 10 frames extracted from
the video clip. In contrast, our proposed lightweight de-
coder modules require minimal inference time.

12. Societal Impact Concern
Since the proposed method mainly works on Deepfake de-
tection problem to mitigate the negative influences brought
by Deepfake technologies, there is no major societal impact
concerns.
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Figure 5. Attention Visualization for Individuals: We present the input frames along with the per-frame attention affinity map for
individual subjects. We retain the experimental settings described in Sec. 4.8 while sampling only a single clip for visualization.


