
A. Appendix
Summary of Appendix
We present the following supplementary materials in Ap-
pendix to include more details of our methods, experimental
settings, and evaluations.
A.1 We discuss the potential societal impacts of our work.
A.2 We list the experimental settings, including training

and measurement hyperparameters, datasets and open-
source repositories used in our evaluations.

A.3 We show the UIBDiffusion’s performance on the
CelebA-HQ-256 dataset.

A.4 We provide additional experiments on score-based
(NCSN) models.

A.5 We present additional evaluation results against Elijah
defenses.

A.6 We conduct additional ablation studies of our proposed
UIBDiffusion, including performance on different tar-
gets, triggers from different classifiers, different trigger
generator and different strengths of variable ε.

A.7 We present the mathematical derivations of the clean
diffusion process and backdoor diffusion process, as
presented in Section 3 of the main paper.

A.8 We provide the detailed flow of trigger generation as
presented in Section 3.2 of the main paper.

A.9 We show the details of the architecture of our trigger
generator.

A.10 We present visualized samples of UIBDiffusion per-
formance over different training epochs, poison rates
and samplers.

A.1. Societal Impact
Our work on backdoor attacks against DMs demonstrates
the vulnerability of DMs under such a stealthy and effective
trigger design. We hope this work can raise the awareness
and understanding of the overlooked deficiency on current
DMs development and deployment. The proposed attack, if
abused, is likely to impose critical security threats to exist-
ing DMs. We believe our study is important and practical as
it brings insights of the full capacity of backdoor attacks and
will facilitate the future development of powerful defensive
algorithms and trustworthy DMs.

A.2. Detailed Experimental Settings
In Section 4.2, we compare UIBDiffusion’s performance
with different backdoor attack diffusion models. All ex-
periments are carried out based on dataset CIFAR10. For
all the three models, we fine-tune the pre-trained generation
model DDPM on CIFAR10 provided by Google. For Bad-
Diffusion [23], we trained the model with learning rate 2e-4,
batch size 128, evaluation batch 256 and 50 training epochs.
For VillanDiffusion [25], we trained the model with learn-
ing rate 2e-4, batch size 128, evaluation batch 1500, training

steps 1000, SDE solver and 50 training epochs. We use the
same training hyper parameters to train UIBDiffusion for
fair comparison.

In Section 4.3 and A.10, we provide results of UIBD-
iffusion on different kinds of samplers with different poi-
son rates. Experiments are carried out based on dataset CI-
FAR10. Using SDE samplers, we trained our model for
50 epochs with a learning rate 2e-4, training batch size of
128, 1000 training time steps and max evaluation batch size
1500. For the model evaluation, our experiments are car-
ried out with an evaluation batch size 256, and we sample
10K images for the computation of FID, MSE and SSIM.
Using ODE samplers, we remain all the training settings
unchanged except training steps. We set inference sampling
steps 50 for DDIM, PNDM, HEUN and LMSD samplers,
otherwise 20 steps.

In Section 4.4, we comprehensively evaluate UIBDiffu-
sion’s robustness against SOTA defenses Elijah and TERD.
We conduct our experiments on dataset CIFAR10 and its re-
moval based on BadDiffusion model, following the original
practice in [26] and [27]. We test pre-trained backdoored
DMs on Elijah. For trigger inversion, we use the same set-
tings as Elijah, with Adam as the optimizer, learning rate
0.1, 100 epochs for DDPM, batch size 100 for DMs with
3 × 32 × 32 space, and λ = 0.5. For feature extension,
we use 16 images generated by input with inverted trigger.
For the random-forest-based backdoor detection, we split
the clean models into 80% training and 20% testing ran-
domly, and add all the backdoored models by one attack to
the test dataset. For our evaluations on TERD, we use the
same settings as provided in TERD, with dataset CIFAR10,
3000 and 1000 trigger estimation iterations for future refine-
ment, optimizer SGD wieh learning rate 0.5, and trade-off
coefficient γ 5e-5 for CIFAR10.

Figure 7. visualized samples UIBDiffusion with CelebA-HQ-256
and 20% poison rate.

A.3. Results on CelebA-HQ
We also present UIBDiffusion’s performance on CelebA-
HQ-256, which is a dataset consisting 30K human face im-



Figure 8. Visualized samples of Score-Based Model(NCSN), with different poison rates 50%, 70%, 90%, 98%.

ages in size of 256 × 256. We fine-tune the pre-trained
generation model DDPM on CelebA-HQ-256 provided by
Google. We then trained our model with learning rate 6e-5,
batch size 64, evaluation batch 1500, training steps 1000,
SDE solver and 50 training epochs. Fig.7 shows a vi-
sual sample of UIBDiffusion working with CelebA-HQ-256
with poison rate 20%. We set CAT as the backdoor target.
This experiment shows that our model can reach 100% ASR
at a low poison rate on the High-definition dataset with a
high quality of generated target image and benign images.

A.4. Results of Score-based Models

In this section, we provide detailed experiment results of
Score-Based models (NCSNs) introduced in Section 4.3.
In our experiments, we trained our model based on a pre-
trained model provided by authors of VillanDiffusion, with
dataset CIFAR10, the same model architecture of DDPM,
and 800 training epochs with a learning rate of 1e-4 and
batch size of 128. For the backdoor, we fine-tuned the pre-
trained model with a learning rate of 2e-4 and batch size of
128 for 100 training epochs.



Figure 9. FID, MSE, SSIM and ASR of Score-Based Models over different poison rates.

Figure 10. Visualized samples of Score-Based Model(NCSN) at
0% poison rate.

Fig. 10 shows UIBDiffusion’s performance on NCSN
diffusion model with 0% poison rate, which indicates a dif-
ference that at 0% poison rate NCSN will sample clean im-
age from backdoor noise instead of black images in Fig. 18
and Fig. 19. Fig. 8 shows the visualized samples of UIBD-
iffusion on NCSN among different poison rates 50%, 70%,
90% and 98%. We randomly sampled 100 images from the
backdoor noise and (d) in Fig. 8 shows that at 98% poi-
son rate, our work reaches an ASR higher then 80%, which
beats the result claimed in VillanDiffusion [25]. Other re-
sults based on evaluation metrics FID, MSE, SSIM and
ASR is listed in Table 8 and Fig. 9. We notice that for
NCSN, it usually requires a higher poison rate to achieve a
high ASR, which leads to the same observation as discussed
in [25].

Poison Rate FID MSE SSIM ASR
0% 24.22 0.1062 3.2969E-2 0%
50% 41.82 0.1005 9.4480E-2 12%
70% 30.45 8.8605E-2 0.2546 29%
90% 38.63 7.7059E-2 0.3530 34%
98% 73.30 3.8181E-2 0.6895 82%

Table 8. FID, MSE, SSIM and ASR comparison between different
poison rates on UIBDiffusion.



Figure 11. Visualized samples of trigger removal performance un-
der 10% poison rate between STOP SIGN trigger(prior work) and
our trigger.

A.5. Additional results of performance over SOTA
defenses

For two SOTA defense experiments, we present visualized
samples showing that UIBDiffusion can fully escape Elijah,
including samples with our triggers and backdoor samples
with inverted triggers. We also compare backdoor samples
with inverted STOP SIGN trigger and our trigger, which
strongly shows that Elijah can not inverse our trigger. We
adopt the same experiment settings in Section 4.4. Fig.11
shows visualized samples before and after trigger removal
on two triggers. (a), (c) show that Elijah can successfully
detect STOP SIGN trigger and our trigger, while (b), (d)
show that Elijah can successfully reverse STOP SIGN but
can not reverse our trigger.

A.6. Ablation Study
In this section, we provide the results of comprehensive ab-
lation studies.

We first summarize UIBDiffusion’s performance on dif-
ferent target images in Fig.12 ,Fig.13 and Table 9. Here we
use the same settings as its in Section A.2. From Fig.12 we
can find that when setting SHOE as target, UIBDiffusion
can reach 100% ASR within 40 training epochs at poison
rate 10%, and UIBDiffusion achieves 100% ASR within
10 training epochs from 70% poison rate, which is slightly
lower than performance on target HAT. Table 9 shows that
UIBDiffusion on target SHOE shows high performance on
FID, MSE and SSIM, which are even higher than that on
target HAT.

Figure 12. Visualized samples of DDPM sampler, with target
SHOE, different training epochs and poison rates from 0% to 90%.

Poison Rate FID MSE SSIM ASR
0% 20.3393 0.2405 4.7405E-5 0%
5% 19.0734 2.6892E-3 0.9898 100%
10% 18.9852 1.4104E-3 0.9938 100%
20% 19.9441 2.1093E-4 0.9986 100%
30% 20.5579 1.2031E-4 0.9990 100%
50% 22.7925 4.3775E-5 0.9994 100%
70% 26.6333 2.9310E-6 0.9996 100%
90% 38.0075 2.4522E-6 0.9996 100%

Table 9. FID, MSE and SSIM comparison between different poi-
son rates on UIBDiffusion for target SHOE.



Figure 13. FID, MSE, SSIM and ASR of DDPM with target SHOE over different poison rates.

Figure 14. Visualized samples of UIBDiffusion with different triggers and targets, including VGG, ResNet based generated triggers, two
original UAP triggers, and three different backdoor targets(HAT, SHOE and CAT).

We then show the robustness of different UIBDiffusion
triggers in Table 10. We generate triggers under the guide of
classifier VGG and ResNet. From the table, we can find that

both triggers based on different classifiers reach 100% ASR
with 5% poison rate and show comparable performance on
MSE, SSIM, while trigger with ResNet shows lower FID,



meaning that model using ResNet-based trigger has the bet-
ter stability clean generation performance.

We also compare UIBDiffusion’s performance between
different trigger generation approaches(ours and original
UAP triggers over VGG and ResNet) in Fig.14. By compar-
ing (a), (e) and (f), we can find that original UAP triggers
can not trig models as powerfully as our trigger, showing
less ASR on higher poison rate. We explained this result in
Section 4.5.

Classifier FID MSE SSIM ASR
VGG 19.5739 1.7407E-3 0.9895 100%

ResNet 18.9640 2.2612E-3 0.9888 100%

Table 10. FID, MSE, SSIM and ASR comparison between differ-
ent classifiers on UIBDiffusion.

Finally, we evaluate the impact of ε, which controls the
strengths of trigger τ, in Fig. 15. We notice that with
higher ε, our model can reach higher ASR with less training
epochs(presented in Fig. 15 (a) and Fig. 15 (b)). (c) shows
that with ε = 0.1, UIBDiffusion can evenly achieve 100%
ASR with only 2% poison rate, although not all the sampled
target images have high quality with 50 training epochs.

Figure 15. Visualized samples of UIBDiffusion with ε = 0.05, 0.1
and poison rate 2% and 5%.

A.7. Mathematical Derivations

Clean diffusion process. In the clean diffusion process,
recall that we define the learnable distribution in forward
process as q(xt|x0) = N (α̂(t)x0, β̂(t)I, t ∈ [Tmin, Tmax],
α̂(t) and β̂(t) are decided by content scheduler and noise
scheduler, separately. We can also write reparametrization
xt as: xt = α̂(t)x0 + β̂(t)ϵt in this period. To approximate
real data distribution, we can optimize the variational lower

bound as below:

− logpθ(x0)

= Eq[logpθ(x0)]

≤ Eq[LT (xT , x0) +

T∑
t=2

Lt(xt, xt−1, x0)− L0(x1, x0)]

(7)
In this equation, we can denote Lt(xt, xt−1, x0) =
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)), LT (xT , x0) =
DKL(q(xT |x0)||pθ(xT )), and L0(x1, x0) = logpθ(x0|x1),
in which DKL(q||p) =

∫
x
q(x)log q(x)

p(x) is the KL-
Divergence. To derive conditional distribution
q(xt−1|xt, x0), we can expand it as:
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According to similar methods, we can derive clean data
distribution with trainable parameter θ as pθ(xt−1|xt) =
N (xt−1;µθ(xt, x0, t), s

2(t)I. We can derive µθ(xt, x0, t)



as:
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, with ϵt replaced with a trained diffusion model ϵθ(xt, t).

To compute the KL-Divergence loss, we can derive:

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)
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Thus, we can finally write the loss function as:

Lc(x, t, ϵ) = ||ϵ− ϵθ(xt(x, ϵ), t)||2 (13)

,with xt(x, ϵ) = α̂(t)x+ β̂(t)ϵ, ϵ ∼ N (0, I).

Backdoor diffusion process. In the backdoor dif-
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, r = x + ε ⊙ τ . According to this derivation, we could
derive a(t), b(t) and c(t) with:
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By following similar methods, we can optimize backdoor
VLBO as follows:
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Based on all the resultes above, we can formulate the
backdoor loss function as an approximation expectation be-
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we can write the loss function in the backdoor diffusion pro-
cess as:
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A.8. Trigger Generation Flow
The trigger generation flow is presented in Fig. 16. The
trigger generator is iteratively optimized under the guidance
of a pre-trained image classifier C. Recall that the additive
universal adversarial perturbations can be adapted as UIB-
Diffusion trigger τ. The classifier is used to identify if the
adversarial perturbation (i.e., trigger τ) is strong and robust
enough to secure a successful attack and the gradient is then
back-propagated to progressively improve the quality of τ.
The non-additive noise f conveys the spatial features and
information that can jointly enhance the quality of τ, as we
show in Algorithm 1.

A.9. Architecture of Trigger Generator
We illustrate the architecture of UIBDiffusion trigger gen-
erator in Fig. 17. Our trigger generator adopts a standard
encoder-decoder architecture, where the encoder down-
samples the input of a noised image into latent representa-
tions and the decoder up-samples the latent representations
and forms the final UIBDiffusion trigger. The bottle-neck
block consists of a stack of standard residual blocks to en-
hance the capability and performance of the generator.

A.10. Visualization
In this section, we present visualized results of UIBDiffu-
sion across different poison rates, training epochs and sam-
plers. It can be seen from Fig. 18 that with DDPM and the
SDE sampler, UIBDiffusion can reach a high attack success
rate at a low poison rate(5%) after 40 training epochs, and
we can reach 100% attack success rate within the first 10
training epochs at 30% poison rate. For ODE solver, we
present the visualized samples of typical ODE sampler and
DDIM, in Fig. 19. We can see that with ODE samplers and
DDIM, our work can achieve a high success rate at 10%
poison rate at 40 training epochs, and we can reach 100%
attack success rate within the first 10 training epochs at 70%
poison rate.



Figure 16. Illustration of UIBDiffusion trigger generation flow, we iteratively optimize the trigger generator to improve the quality of the
UIBDiffusion trigger. ⊗ represents the spatial transformation operation.

Figure 17. Generator architecture, in which (a) represents for encoder block, (b) represents for bottleneck block, and (c) represents for
decoder block.



Figure 18. Visualized samples of DDPM sampler, with target
HAT, different training epochs and poison rates from 0% to 90%.

Figure 19. Visualized samples of DDIM sampler, with target HAT,
different training epochs and poison rates from 0% to 90%.


