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Our supplementary materials contain Section S1: Ad-
ditional Implementation Details, Section S2: Calibration
Confidence, Section S3: Generalization: Text-to-Video Re-
trieval, and Section S4: Aditional Qualitative Results.

S1. Additional Implementation Details
Multimodal Encoder. To handle multimodal inputs (refer
to Fig. S1), we utilize the Frozen CLIP L/14 model [? ],
a 24-layer transformer pretrained on extensive image-text
pairs using a contrastive learning objective [? ]. The vi-
sion encoder processes inputs of size 224× 224, producing
both spatial tokens and a global CLS token. For compu-
tational efficiency, we use only the CLS token to represent
each frame in long videos. Similarly, the CLIP text encoder,
a 12-layer transformer, extracts feature representations for
the queried event from the input text.
Hierarchical Adapter. As illustrated in Fig. S1, the Hierar-
chical Adapter processes the ith video segment Ci to gener-
ate both sparse (Si) and dense (Di) features. For the MAD
dataset, video features are divided into sliding windows of
Lw = 125 seconds, while for the VidChapters-7M dataset,
the window length is Lw = 500 seconds. From each seg-
ment, 250 frames are uniformly sampled and used as input
to the hierarchical adapter.

Sparse features Si are computed using a combination of
cross-attention and self-attention mechanisms, each imple-
mented with two layers (N = 2). This lightweight de-
sign ensures minimal computational overhead compared to
the 24 transformer layers of the original CLIP Vision En-
coder. Dense features Di are derived by projecting the
CLIP-encoded frame features (dimension 768) into the em-
bedding space of the Large Language Model (dimension
4096) [? ] using a linear transformation.
Large Language Model. We utilize a pre-trained Vicuna-
7B [? ] model to ground queried events using the adapted
visual features. Built upon LLaMA [? ], this model consists
of 32 transformer layers and has been fine-tuned on 70K
user-shared conversations from ShareGPT [? ].

To enhance training efficiency, we adopt Low-Rank
Adaptation (LoRA) [? ], a method commonly used in recent
works [? ? ]. LoRA allows us to fine-tune the model with-
out modifying its core weights by introducing lightweight,
trainable modules. This significantly reduces computational
overhead while retaining the model’s flexibility. For our
setup, we configure LoRA with a rank of r = 64 and a
scaling factor of α = 128.
Training on ReVisionLLM Model We begin by pretrain-

Figure S1. Hierarchical Adapter processes the features extracted
by the multimodal encoder, using both the video segments and the
textual description of the queried event as inputs. It generates two
types of temporal features: sparse and dense. Sparse features are
computed through a combination of cross-attention, self-attention,
and a feed-forward network, while dense features are generated
using a linear projection layer.

ing the Linear Projector (Fig. S1) using the LCS-558K
dataset from LLaVA [? ]. This step aligns the CLS token
from the CLIP Vision Encoder with the LLM’s embedding
space. The projector is trained for 1 epoch with a batch size
of 128 and a learning rate of 1× 10−3.

Following pretraining, we implement a two-stage train-
ing pipeline for ReVisionLLM, maintaining a consistent
learning rate of 1× 10−4. We use the AdamW optimizer [?
] with a warmup ratio 0.03 and a cosine scheduling strategy.

In the first stage, the Linear Projector is frozen, and the
LLM is fine-tuned using LoRA on dense features, focusing
on the lowest hierarchy level. This stage employs a batch
size of 128, spanning 5 epochs for the MAD dataset and
1 epoch for the VidChapters-7M dataset. Sparse temporal
features are introduced for upper hierarchies to reduce the
LLM’s visual input size. To enable sparse feature genera-
tion, we freeze the LoRA module and fine-tune the Cross-



Attention, Self-Attention, and Feed-Forward layers of the
Hierarchical Adapter, using a batch size of 32 for 1 epoch.

The training in this stage incorporates contrastive video
segments where the queried event is absent. These segments
are randomly sampled from hour-long videos and do not
overlap with the temporal boundaries of the ground truth
event. By selecting contrastive segments from the same
video, the model is trained to handle challenging inference
scenarios, where it must distinguish the queried event from
visually and contextually similar scenes within the video.

In the second stage, all components of the Hierarchi-
cal Adapter are frozen, and a new LoRA module is fine-
tuned for long-video processing on the Stage 2 objective.
This stage employs a batch size of 8 and runs for 2 epochs.
Two separate LoRA modules are utilized: one optimized
for short video training and another adapted for long video
processing.
Training on ReVisionLLM-U Model The unified model
variant differs from our default model only in its training
methodology. Training a unified model with shared param-
eters across all hierarchical levels poses notable challenges.
To address this, we adopt an enhanced two-stage strategy.
The first stage, including pretraining, is similar to the pro-
cedure used in the ReVisionLLM framework. In the sec-
ond stage, however, we introduce a dual-training approach,
where the ReVisionLLM-U framework is simultaneously
trained on both short video clips and hour-long videos. This
approach reduces the risk of catastrophic forgetting, ensur-
ing the retention of short-segment representations.

A key challenge arises from the significant differences
between short-segment and long-video data. Short seg-
ments utilize dense temporal features, while long videos
rely on sparse temporal representations, such as CLS fea-
tures. Additionally, short-segment training involves only
video features, whereas long-video descriptions require
both video and text features as inputs. To reconcile these
differences, we implement an alternating batching strategy.
During training, batches of short segments and long videos
are alternately sampled, enabling the model to learn effec-
tively from both data types.

This alternating training strategy not only mitigates
catastrophic forgetting but also facilitates the successful
training of the ReVisionLLM-U framework, which main-
tains shared parameters across all hierarchical levels. For
ReVisionLLM-U, we employ the same hyperparameters as
those used in ReVisionLLM , including learning rate, batch
size, training epochs, optimizer, and scheduler (as detailed
in the previous section).
Inference for ReVisionLLM. During inference, video seg-
ments are created using a sliding window approach. For
the MAD dataset, each segment spans 125 seconds with a
stride of 25 seconds, while for the VidChapters-7M dataset,
segments are 500 seconds long with a stride of 100 sec-

onds. From each segment, 250 frames are uniformly sam-
pled. Sparse temporal features are then extracted using the
Hierarchical Adapter and provided as input to the LLM to
identify relevant video segments.

In our implementation, we employ two hierarchies with
long videos. However, it can be extended to more levels
based on video length. At the top level, 100 video segments
(approx. 150 minutes) are processed simultaneously, while
the second level processes 33 segments (approx. 50 min-
utes) simultaneously. Both hierarchies identify regions of
interest, refined at the lowest hierarchical level. In this final
hierarchy, all 250 dense temporal features from the selected
segments are processed to pinpoint the precise event bound-
aries.
Inference for ReVisionLLM-I. The inverse model variant
differs from our default model only in the inference method.
In this variant, the inference begins at the lowest hierarchi-
cal level. All video segments are processed together in a
single input batch, with their dense temporal features fed
into the LLM. The LLM predicts temporal boundaries for
multiple segments, often resulting in a high number of false
positives. To mitigate this, the false positives are recur-
sively passed through the second and third hierarchical lev-
els, where they are filtered out. These upper levels retain
only the most confident predictions, reducing errors. Fi-
nally, the confidence scores from the higher hierarchies are
used to adjust and normalize the scores of the initial predic-
tions, improving the overall accuracy of the model. We will
release the code and pre-trained models for further use.

S2. Calibration Confidence
Accurate calibration of our model’s confidence is crucial
for minimizing false positives and improving the overall
effectiveness of our approach. To evaluate the impact of
our training strategy on model calibration, we compare our
method’s performance to the baseline VTimeLLM [? ]. A
model is considered well-calibrated if its confidence scores
match the actual proportion of correct predictions. Calibra-
tion is typically measured using the Expected Calibration
Error (ECE) [? ], which quantifies the difference between
predicted probabilities and observed outcomes by dividing
the predicted confidence into discrete bins. A lower ECE
value indicates better calibration, with an ECE of 0 repre-
senting perfect calibration.

For a dataset of N video segments and B evenly spaced
bins bj , the ECE is computed as follows:

ÊCE =

B∑
j=1

|bj |
N

|conf(bj)− acc(bj)|

where conf(bj) is the average confidence of samples in bin
bj , acc(bj) is the accuracy of predictions in bin bj , and |bj |
is the number of samples in bin bj . In our experiments,



conf(bj) corresponds to the confidence score (Ri) defined
in Section 3.4 of the main paper. A prediction is consid-
ered correct if the Intersection over Union (IoU) exceeds a
threshold τiou ∈ {0.1, 0.3, 0.5}.

By comparing ECE values across models, we can assess
the effectiveness of our training strategy in improving cali-
bration and generating more reliable confidence estimates.

Model
ECE @ IoU Thresholds (τIoU)

τ = 0.1 ↓ τ = 0.3 ↓ τ = 0.5 ↓

VTimeLLM∗ 0.6231 0.6233 0.6237
ReVisionLLM 0.4614 0.4698 0.4791

Table S1. Expected Calibration Error (ECE) comparison be-
tween ∗Baseline (VTimeLLM+CONE) and Our Model across IoU
thresholds (τIoU). Our model demonstrates better calibration of
confidence compared to the baseline across all IoU thresholds.
Lower values indicate superior calibration performance.

Table S1 presents a comparison of Expected Cal-
ibration Error (ECE) values between the baseline
VTimeLLM+CONE model and our ReVisionLLM
across three Intersection over Union (IoU) thresholds:
τIoU=0.1, τIoU=0.3, and τIoU=0.5. Lower ECE values indicate
better calibration performance. In this analysis, we set
the number of bins, B = 10. Our model consistently
outperforms the baseline across all thresholds, highlighting
the effectiveness of calibrated fine-tuning in improving the
reliability of confidence estimates. The increase in error
with higher IoU thresholds (+0.01%) is negligible, further
validating the robustness of our approach.

S3. Generalization: Text-to-Video Retrieval

Problem Statement. We show the generalizability of Re-
VisionLLM on the task of text-to-video retrieval, where the
goal is to retrieve the most relevant videos from a given
video set V for a provided query text t describing an event.
This involves ranking the videos v ∈ V based on their
similarity to the query. For this problem, the input con-
sists of a video v and a text t. We represent a video
v ∈ RT×3×H×W as a sequence of T image frames, where
v = [v1, v2, . . . , vF ]T , and each frame vf has a spatial res-
olution of H × W with 3 color channels. Text S is repre-
sented the queried sentence with Ns words.
Task Adaptation for ReVisionLLM. In our original
grounding task, we work with a single long video, which we
divide into a set of shorter segments, denoted as C. In con-
trast, for the text-to-video retrieval task, we handle multiple
videos, forming a set V . To address this, we combine all
the videos into one long sequence and predict the index of
the relevant video. We uniformly sample 100 frames from

each video and use our vision encoder to extract features,
resulting in video features V̂ ∈ R|V|×100×768. These fea-
tures serve as our video segments, so C = V̂ . Additionally,
we extract textual features from the query using the text en-
coder, resulting in Q ∈ RNs×768, where Ns is the number
of words in the query.

For the input prompt, we use: “<video> Does the
<event> happen in the video? Answer yes or no.” The
model is trained to respond “Yes.” for relevant videos
and “No.” for irrelevant ones. In this setup, we use the
ReVisionLLM-I variant, where we first process each video
at the lowest hierarchical level, then revise our predictions
recursively at higher levels. At the upper hierarchies, the
prompt becomes: “<video> in which video can we see the
<event> happening?” The model responds with “In video
v.”, where v denotes the index of the relevant video.

Finally, we rank the predicted videos based on the cali-
brated confidence scores from our LLM, ensuring more ac-
curate retrieval results.
Dataset Details. The MSR-VTT dataset contains 10,000
videos, each associated with around 20 human-annotated
captions. Notably, the captions for a single video often de-
scribe distinct parts of the content, aligning with our goal
of matching a specific textual query to the most relevant
frames within a video. The videos in this dataset range in
duration from 10 to 32 seconds. For training, we use 9k-
Train split, including approximately 9,000 videos as out-
lined in [? ]. Unless specified otherwise, our experiments
use the 9k-Train split for training. To evaluate our models,
we adopt the 1k-Test set from [? ], which comprises 1,000
carefully selected video caption pairs.

S4. Aditional Qualitative Results
In this section we provide additional qualitative results for
MAD, VidChapters-7M and MSRVTT datasets.

MAD Dataset: In Figure S2, the qualitative results
illustrate ReVisionLLM’s ability to localize subtle and
tiny moments within extremely long videos, often set
in visually similar scenes. For Event 1, ReVisionLLM
accurately identifies the brief instance where a woman
walks off amidst a dimly lit street setting, despite the
challenge of nearly identical surrounding frames. This
demonstrates the model’s precision in grounding temporal
boundaries in extended sequences where minor actions
must be differentiated. In Event 2, the model successfully
localizes the moment of a hazy orange sunrise over the
sprawling streets, slums, and skyscrapers of Mumbai. This
event, embedded within a visually repetitive urban setting,
showcases ReVisionLLM’s capacity to detect subtle tem-
poral shifts in lighting and atmosphere. These examples
emphasize the model’s ability to handle the intricacies
of long-form videos, identifying precise moments even



Figure S2. Additional Qualitative Results for Long video temporal grounding on the MAD dataset. ReVisionLLM effectively identifies
moments within hour-long movies by leveraging a recursive processing approach that operates at both the short video segment level and
hour-long videos. Our VLM baseline completely fails to locate the events in these scenarios.

Figure S3. Qualitative Results for Text-to-video retrieval task on MSRVTT dataset. Here, we only show one representative video frame
for four diverse queried events, which our model successfully retrieves.

when scenes exhibit minimal variation, thereby enabling
enhanced retrieval and understanding of extended video
content.

MSRVTT Dataset: In Figure S3, we show a representa-
tive video frame for each of the four diverse events that our
model successfully retrieved. Events (1) and (2) are visi-
ble for short time intervals inside the video, and our model
effectively captures these moments due to its ability to fo-
cus on fine-grained details. In contrast, events (3) and (4)
involve objects with varying speeds and directions, inter-
acting dynamically with their environment. For example, in
(3), the dog crosses the road, while in (4), the car moves
along the road. These examples demonstrate our model’s
ability to comprehend and capture both visual and action-
related details, enabling it to retrieve the most relevant video
from a large dataset.

VidChapers-7M Dataset: In Figure S4, the qualitative re-
sults from the VidChapters-7M dataset demonstrate ReVi-
sionLLM’s ability to enhance online video search and con-
tent retrieval across diverse platforms, including YouTube,

educational portals, and news archives. In Event 1, ReVi-
sionLLM accurately localizes a video latency test in a prod-
uct review, capturing fine-grained temporal details essen-
tial for identifying technical demonstrations. Event 2 show-
cases the model’s ability to navigate complex, sequential
workflows, pinpointing design importing actions in Canva.
Event 3 highlights ReVisionLLM’s proficiency in localizing
a news report on Trans Mountain pipeline construction, ef-
fectively distinguishing dynamic scenes involving machin-
ery and landscapes—key for indexing news and documen-
taries. In Event 4, the model identifies a cameraman’s emo-
tional reaction during a podcast, illustrating its capability
to understand contextual nuances and interactions. These
results emphasize ReVisionLLM’s effectiveness in improv-
ing content understanding and enabling precise event re-
trieval in long-form videos, with strong applicability to on-
line video search engines and content recommendation sys-
tems.



Figure S4. Qualitative Results of long video temporal grounding on the VidChapters-7M dataset. ReVisionLLM demonstrates its ability
to accurately locate specific events within hour-long YouTube videos across diverse content types, including tutorials, product reviews,
news, and podcasts. This precise localization of video chapters has the potential to streamline video search engines and enhance user
experience across various online platforms.

Speed during Inference: On the MAD test set (average
video length: 110 minutes), our most efficient variant pro-
cesses queries in 2.6 seconds, achieving 11.9% R1@0.1.
Our best-performing variant (17.3% R1@0.1) takes 5 sec-
onds per query, comparable to the baseline speed.

Effciency during Training: ReVisionLLM converges in 1,
and 5 epochs for VidChapters-7M and MAD, significantly
faster than prior SOTA, RGNet[? ] (35 epochs on MAD)
and M-DETR[? ] (50 epochs on VidChapters-7M).

Complicated Event Descriptions: ReVisionLLM is ca-
pable of locating complicated events with lengthy descrip-
tions, For example, it successfully captures the event “The
jazz plays on as the movie cuts back and forth between the
fast-moving someone, rushing down the SoHo streets, past

a truck waiting for a light to change, past some pedestri-
ans, some garbage cans, turning corners, and the strolling
someone, walking up different streets, past different build-
ings.” from the MAD dataset, which the baseline method
fails to locate.
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