
A. Appendix
A.1. Fisher Information Derivation: A Bayesian

Interpretation of PUP 3D-GS

The Fisher Information is the variance of the score:

I(θ) = Eθ[(∇θ log p(x|θ))2]. (11)

Lemma 5.3 from [15] gives that this is equivalent to:

I(θ) = Eθ[−∇θ∇θ log p(x|θ)], (12)

assuming log p(x|θ) is twice differentiable and with certain
regularity conditions.

To start, we reformulate our L2 objective as a log-
likelihood:

− log p(I|Φ,G) = E(I,ϕ)∼(I,Φ)[(I−IG(ϕ))
T (I−IG(ϕ))],

(13)
where I is the set of ground truth image, Φ is the set

of their corresponding poses, G are the model Gaussian pa-
rameters, IG(ϕ) is the rendering function for pose ϕ, and we
assume that the error follows a Gaussian distribution.

We can take the Laplace approximation of the log of the
posterior distribution over the model parameters G on the
converged scene parameters Ĝ as:

− log p(G|I,Φ) ≈ − log p(Ĝ|I,Φ)+1

2
(G−Ĝ)H(Ĝ)(G−Ĝ),

(14)
where:

H(Ĝ) = −∇G∇G log p(Ĝ|I,Φ). (15)

If we assume a uniform prior, then our claimed Fisher In-
formation matrix from Section 4.1 is precisely the Hessian
H(Ĝ) of this posterior.

From this formulation of our Fisher Information matrix,
Proposition 3.5 from [12] gives that the log determinant of
the Fisher as the entropy of the second order approximation
of p(G|I,Φ) around Ĝ. If we restrict the posterior to a par-
ticular Gaussian’s parameters Gi, giving p(Gi|I,Φ), the log
determinant of the block diagonal element corresponding
to this Gaussian is a measure of entropy for that particular
Gaussian. This interpretation gives our pruning scores as a
ranking of the Gaussians by their entropy on this posterior.

A.2. Ablation on Patch Size

We ablate our choice of patch size in Table 6. Notice that,
although the 4 × 4 patches that we use in our experiments
produce slightly better image quality metrics, the 2× 2 and
8× 8 patches also produce similar results.

A.3. Ablation on Per-Round Pruning Percentages

Figure 8 plots the average metrics for each permutation of
per-round pruning percentages that results in approximately

Table 6. Mean PSNR, SSIM, LPIPS, FPS, and point cloud size for
the Mip-NeRF 360 dataset using our sensitivity score computed
with 2× 2, 4× 4 and 8× 8 patches.

Methods Mip-NeRF 360

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓
3D-GS 27.47 0.8123 0.2216 83.88 746.46
2× 2 26.46 0.7869 0.2742 218.59 74.65
4× 4 (Ours) 26.67 0.7862 0.2719 204.81 74.65
8× 8 26.53 0.7775 0.2780 189.23 74.65

Figure 8. The average PSNR, SSIM, LPIPS, and FPS across the
MipNeRF-360 dataset scene after pruning approximately 90% of
Gaussians with different per-round percentages in our two-round
pipeline. The dotted red line denotes our chosen per-round pruning
percentages of 80% then 50%.

90% total pruning across all scenes in the Mip-NeRF 360
dataset. Similar to the bicycle scene evaluated in Figure 7,
pruning 80% of Gaussians in the first round and then 50% in
the second optimizes image quality and rendering speed at
exactly 90% total pruning. Our method outperforms Light-
Gaussian across all metrics and per-round pruning percent-
age permutations.

A.4. Scene Evaluations

PSNR, SSIM, LPIPS, and FPS for each scene from the Mip-
NeRF 360, Tanks&Temples, and Deep Blending datasets
that was used in 3D-GS [11] are recorded in Tables 7, 8,
9, and 10, respectively. Note that the sizes of the pruned
scenes in this section are identical because exactly 90% of
Gaussians were removed from each of them using our two
step prune-refine method. FPS is collected using a Nvidia
RTXA4000 GPU.



Table 7. PSNR on each scene after two steps of prune-refine.

Methods Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 25.09 32.25 29.11 21.34 27.28 31.57 31.51 26.55 22.56 22.10 25.43 28.15 29.81
LightGaussian 24.34 29.64 27.57 20.70 25.78 29.45 30.65 25.88 22.49 21.35 24.81 27.73 29.29
Ours 24.72 30.64 28.00 20.86 26.23 29.83 31.03 26.30 22.39 21.03 24.40 28.00 29.71

Table 8. SSIM on each scene after two steps of prune-refine.

Methods Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 0.7467 0.9457 0.9140 0.5875 0.8558 0.9317 0.9255 0.7687 0.6352 0.8134 0.8782 0.8778 0.8854
LightGaussian 0.6801 0.8921 0.8562 0.5343 0.7833 0.8830 0.8989 0.7256 0.5956 0.7349 0.8512 0.8546 0.8747
Ours 0.7270 0.9261 0.8917 0.5548 0.8189 0.9128 0.9152 0.7570 0.6248 0.7600 0.8541 0.8762 0.8861

Table 9. LPIPS on each scene after two steps of prune-refine.

Methods Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 0.2442 0.1811 0.1838 0.3602 0.1225 0.1165 0.1973 0.2429 0.3460 0.2077 0.1476 0.2895 0.2823
LightGaussian 0.3338 0.2568 0.2801 0.4258 0.2407 0.2042 0.2625 0.3132 0.4315 0.3227 0.2041 0.3383 0.3201
Ours 0.2965 0.2281 0.2297 0.4211 0.1997 0.1545 0.2278 0.2836 0.4062 0.2967 0.1916 0.3067 0.2963

Table 10. FPS on each scene after two steps of prune-refine. Results were collected with a Nvidia RTXA4000 GPU.

Methods Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 32.32 106.65 79.70 66.48 37.60 64.46 76.31 54.04 59.08 114.45 81.26 56.79 76.79
LightGaussian 110.94 208.15 168.48 182.28 133.77 165.98 172.46 169.98 147.03 378.50 279.55 206.94 261.27
Ours 127.85 289.21 222.77 205.21 164.79 237.66 231.63 179.38 184.78 494.76 287.44 284.81 318.06

A.5. Prune-Refining EAGLES

In Table 11, we ablate our PUP 3D-GS pipeline against
LightGaussian’s pipeline on an EAGLES [6] model of the
Mip-NeRF 360 bicycle scene. Notice that the base EA-
GLES model produces similar metrics to vanilla 3D-GS de-
spite being 2.51× smaller than it. By applying PUP 3D-GS
to the EAGLES model, we further reduce its size to 25.14×
smaller than the vanilla 3D-GS model while achieving bet-
ter image quality and rendering speed than LightGaussian.

Table 11. Results from training EAGLES [6] on the bicycle scene
and then running two steps of prune-refine with our and Light-
Gaussian’s methods.

Methods Mip-NeRF 360 Bicycle Scene

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓
3D-GS 25.09 0.7467 0.2442 32.12 1345.58
Baseline (EAGLES) 25.07 0.7508 0.2433 47.82 535.21
EAGLES + LightGaussian 23.57 0.6082 0.4039 109.26 53.52
EAGLES + Ours 24.01 0.6686 0.3566 144.56 53.52

A.6. Comparison with Other Pruning Methods

Several other papers also introduce pruning techniques.
Compact-3DGS[14] reports that they prune 58.7% of Gaus-
sians from the Mip-NeRF 360 bonsai scene, slightly im-
proving PSNR from 29.87 to 29.91. After pruning 58.7% of
Gaussians with a single round of prune-refine, our method
produces a much larger PSNR boost from 32.25 to 32.55.
Mini-Splatting [5] and RadSplat [24] achieve higher ren-
dering quality through orthogonal methods like improved
densification and pretrained NeRF models. Since our prun-
ing approach can be combined with these methods, it is un-
clear if a direct comparison with their results is useful. As
reported in Table 2, our 10× reduction in the number of
Gaussians is significantly higher than the 2.28× and 6.94×
reductions reported by Compact-3DGS and Mini-Splatting.

A.7. Potential Directions for Future Research

The theory behind our Hessian approximation relies on a
set of views whose L1 loss is close to zero, so we com-
pute our spatial sensitivity score on the training views after



optimization to remain as mathematically principled as pos-
sible. However, our score (1) does not rely on ground-truth
data and (2) can be computed when the L1 loss is suffi-
ciently low earlier in the 3D-GS training pipeline. These
properties may provide a useful first step for several poten-
tial directions for future research.

Further optimizations and/or sufficiently powerful hard-
ware could allow our sensitivity score to be used to prune
the model during training. This is a promising research di-
rection that could potentially lead to even higher compres-
sion and rendering speeds. Additionally, it may be possible
to identify a subset of pixels, rays, or views that would pro-
duce a score that is most effective for pruning. Since this
is a non-trivial, combinatorially difficult problem and our
pruning score can be computed across the entire training set
in seconds, we also leave this as an open research question.

Our score can be extended to other 3D Gaussian
pipelines such as the Mini-Splatting and PGSR pipelines [2,
5]. Some considerations must be made, such as the effect
of each Gaussian on the depth and normal maps produced
by these approaches along with the rendered image. Nev-
ertheless, the math in our main paper holds if we include
the depth and normal maps as additional channels. Pruning
anchor-based approaches like Scaffold-GS [17] and derived
works like Octree-GS [26] is a more difficult problem. Di-
rectly pruning Gaussians with our current pipeline will not
work because a fixed number of Gaussians are produced for
each anchor point; pruning anchor points is ill-advised be-
cause they are generated in areas of the scene that do not
have sufficient geometry. While our PUP 3D-GS approach
presents a method for directly quantifying a Gaussian’s im-
portance in the scene, determining how to map that score to
pruning anchors is an open research problem.

FisherRF [9] also computes Fisher information for 3D
Gaussian Splats, but uses it to perform active-view selec-
tion and post-hoc uncertainty visualization instead of prun-
ing. Furthermore, FisherRF only approximates the diago-
nal of the Fisher matrix and uses the color parameters of
the Gaussians, whereas our approach uses the spatial mean
and scaling parameters to compute a more accurate block-
wise approximation. Our sensitivity pruning score can be
directly repurposed for these applications, but we leave this
to future work because it is not the focus of our paper.

A.8. Additional Scene Visualizations

Figure 9 provides a visual comparison of the ground truth
image against renderings from the 3D-GS model before and
after pruning with our PUP 3D-GS and LightGaussian’s
pipelines. Notice that our method consistently achieves
higher visual fidelity and retains more salient foreground
information like individual leaves and legible text.

A.9. Background Degradation

At the extreme pruning ratios used in our work, we ob-
serve some background degradation in pruned models. In-
tuitively, background regions that are observed from fewer
viewpoints exhibit higher uncertainty than well-observed
foreground regions, making them more susceptible to prun-
ing. Given our aggressive pruning threshold of 90%, loss-
less compression is not expected. However, our method pri-
oritizes preserving fine details in the foreground while prun-
ing less important Gaussians in the background to maintain
overall visual quality. We do not consider this a failure case
because retaining foreground details over background de-
tails is often preferable.

In contrast, LightGaussian exhibits the opposite ten-
dency, often favoring background preservation over fore-
ground fidelity. Figure 10 illustrates this difference by com-
paring L1 residuals against renderings from the base 3D-
GS model and highlighting instances where PUP 3D-GS
degrades the background more than LightGaussian. A po-
tential strategy for mitigating this trade-off is to reweight
the background Gaussian scores using masking, incorpo-
rating a tunable parameter to control the balance between
foreground and background degradation. We leave this ex-
ploration to future work.

A.10. Scene Residuals

Figures 11 and 12 provide visual comparisons of the L1
residual of renderings from the 3D-GS model before and
after pruning 90% of Gaussians with our PUP 3D-GS and
LightGaussian’s pipelines. Figure 11 compares the L1
residuals with respect to the ground truth image, while Fig-
ure 12 compares them with respect to renderings from the
base 3D-GS model. In both cases, our PUP 3D-GS pipeline
produces less L1 error and retains more salient foreground
information than LightGaussian’s.



Figure 9. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s method. Top: bicycle from the Mip-
Nerf 360 dataset. Middle: stump from the Mip-Nerf 360 dataset. Bottom: playroom from the Deep Blending dataset. A larger example
image of playroom can be found in Figure 1.

Figure 10. Cases where our method produces more background L1 error against renderings from the base 3D-GS model than LightGaus-
sian. Columns ”3D-GS”, ”Ours”, and ”LightGaussian” are the same as in Figure 4. Columns ”Ours GS L1 Error” and ”LG GS L1 Error”
are the L1 error images of our method and LightGaussian against the original 3D-GS reconstruction of the scene. Our method prioritizes
retaining visual quality and fine details in the foreground over preserving less important information in the background.



Figure 11. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s with additional L1 error visualizations
against the ground truth images. Columns ”GT”, ”Ours”, and ”LightGaussian” are the same as in Figure 4. Columns ”Ours L1 Error” and
”LG L1 Error” are the L1 Error images of our method and LightGaussian against the ground truth images. Our method produces lower
error than LightGaussian in all examples.



Figure 12. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s with additional L1 error visual-
izations against renderings from the base 3D-GS model. Columns ”3D-GS”, ”Ours”, and ”LightGaussian” are the same as in Figure 4.
Columns ”Ours GS L1 Error” and ”LG GS L1 Error” are the L1 error images of our method and LightGaussian against the original 3D-GS
reconstruction of the scene. Our method produces lower error than LightGaussian in all examples.
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