
A. Appendix
A.1. AccuTile Proof of Correctness Sketch

We outline the correctness of our AccuTile algorithm by
examining the different cases that arise when identifying the
minimum and maximum points of an ellipse within a given
tile row. Due to the symmetry of Equation 14, exchang-
ing the variables x and y along with the coefficients a and
c yields equivalent statements for tile columns. Thus, we
focus our discussion on tile rows.

Case 1: The ellipse does not intersect the tile row bound-
ary. The entire ellipse, including the bounding box extrema
xmin and xmax computed by SnugBox, lies within the row.
AccuTile correctly selects these points as the furthest ellipse
extents. Figure 4 illustrates an example of this.

Case 2: The ellipse intersects one of the tile row bounding
lines but not the other.
This implies that either ymin or ymax lies within the row, but
not both. There are several possible subcases:
• Case 2.1: If both xmin and xmax are in the tile row, then

they are correctly assigned as the furthest extent of the
ellipse by AccuTile. Figure 5 illustrates an example of
this case.

• Case 2.2: If xmin and xmax are not in the row but ymax

is, then the ellipse decreases monotonically from ymax to
the row boundary on both sides of ymax, making the row
boundary intersections the furthest extent of the ellipse
and are the points selected by AccuTile as the furthest
row extent. This follows from the absence of the criti-
cal points xmin and xmax. A symmetric argument applies
when ymin is in the row instead. The top tile row of Fig-
ures 5 and 6 illustrate examples of this case.

• Case 2.3: If xmin and ymin are in the row but xmax is
not, then xmin is assigned as the minimum extent of the
ellipse. The ellipse increases monotonically from ymin to
the boundary to the right of ymin and from xmin to the
boundary to the right of xmin. Under a corrollary of the
definition of an ellipse, the sides of the ellipse do not in-
tersect. Thus, the ellipse point on the curve that extends
to the right of ymin and intersects the tile row boundary
must be the maximum ellipse extent, and AccuTile cor-
rectly selects it as such. A similar argument applies in
the following cases: (1) xmax and ymin are in the tile row
but xmin is not, (2) xmin and ymax are in the tile row but
xmax is not, and (3) xmax and ymax are in the tile row but
xmin is not. The bottom tile row of Figure 6 illustrates an
example of this case.

Case 3: The ellipse intersects both the top and bottom row
boundary.
If xmin or xmax is in the tile row, then AccuTile correctly
assigns it as the minimum or maximum extent of the ellipse,
respectively. The right side of the ellipse in the middle tile

row in Figure 6 illustrates an example of this case. Other-
wise, the ellipse monotonically increases from the bottom
row boundary to the top row boundary, or vice-versa, due
to the absence of critical points. Selecting the minimum or
maximum boundary point, as done by AccuTile, yields the
correct result. The left side of the ellipse in the middle tile
row in Figure 6 illustrates an example of this case.

Figure 4. (Left) SnugBox and (right) AccuTile sketch of Case 1.
As with Figure 2c, our AccuTile algorithm iterates over the tile
rows; the only points that are processed are xmin and xmax.
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Figure 5. (Left) SnugBox and (right) AccuTile sketch of Case 2.1.
Our AccuTile algorithm iterates over the tile rows; the only points
that are processed are xmin, xmax, A, and B.
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Figure 6. (Left) SnugBox and (right) AccuTile sketch of Cases 2.2,
2.3, and 3. Our AccuTile algorithm iterates over the tile rows; the
only points that are processed are xmin, xmax, A, B, C, and D. A
detailed walkthrough of this example is presented in Section 4.1.2.
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Figure 7. We sweep pruning percentages in 5% increments for Hard Pruning (0% − 40%) and Soft Pruning (0%, 50% − 95%) on all
scenes listed in Section 5.1. Experiments are performed 3× on each scene without our Gaussian localization methods; the reported metrics
are averaged across all runs. (0%, 0%) is the baseline 3D-GS model, the first column (0%, :) is Hard Pruning in isolation, and the first row
(:, 0%) is Soft Pruning in isolation. The red dots at (80%, 30%) denote the percentage settings used in our manuscript. We report the FPS
increase and the Number of Gaussians and Train Time decrease factors to be consistent with the format in Table 3.

Table 5. Average reported metrics for each pruning method across
all scenes in the Tanks & Temples dataset.

Method Comp ↑ FPS ↑ Train ↑ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GS [14] 1.00× 1.00× 1.00× 23.70 0.849 0.178
Trimming [2] 4.00× - - 23.69 0.831 0.210
Compact [18] 2.19× 1.16× 0.76× 23.32 0.831 0.201
EAGLES [10] - 1.73× 1.19× 23.10 0.820 0.220
Reducing [26] 2.56× 1.91× 1.27× 23.57 0.840 0.188
Light [6] 2.94× 1.97× - 23.11 0.817 0.231
ELMGS [1] 5.00× 4.05× - 23.90 0.825 0.233
PUP [11] 10.0× 4.00× - 22.72 0.801 0.244
Mini-Splat [7] 9.20× - - 23.18 0.835 0.202

+SnugBox 0.99× 1.61× 1.11× 23.69 0.849 0.178
+AccuTile 0.99× 1.67× 1.12× 23.73 0.849 0.177
+Soft Pruning 1.69× 2.48× 1.36× 23.54 0.841 0.201
+Hard Pruning 10.1× 6.30× 1.58× 23.45 0.821 0.241

A.2. Overall Pruning Percent Metrics
In Figure 7, we perform a parameter sweep over Hard

Pruning percentages from 0% − 40% at 5% intervals and
Soft Pruning percentages at 0% and from 50 − 95% at 5%
intervals. We conduct each experiment 3× on each scene
listed in Section 5.1 to reduce variance, then average the
metrics across all runs. All experiments are run without our
Gaussian localization methods – SnugBox and AccuTile –
to ablate the effect of each pruning method in isolation. Our
(80%, 30%) pruning percentages are empirically selected to
produce a favorable balance between speed and quality.

Table 6. Average reported metrics for each pruning method across
all scenes in the Deep Blending dataset.

Method Comp ↑ FPS ↑ Train ↑ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GS [14] 1.00× 1.00× 1.00× 29.09 0.886 0.288
Trimming [2] 1.33× - - 29.43 0.897 0.267
Compact [18] 2.65× 1.37× 0.79× 29.79 0.901 0.258
EAGLES [10] - 1.30× 1.31× 29.92 0.900 0.250
Reducing [26] 2.86× 1.79× 1.27× 29.63 0.902 0.249
Light [6] - - - - - -
ELMGS [1] 5.00× 4.15× - 29.24 0.894 0.273
PUP [11] 10.0× 4.51× - 28.85 0.881 0.301
Mini-Splat [7] 8.06× - - 29.98 0.908 0.253

+SnugBox 0.97× 2.11× 1.12× 29.18 0.886 0.287
+AccuTile 0.97× 2.32× 1.13× 29.12 0.885 0.288
+Soft Pruning 1.86× 3.56× 1.41× 29.29 0.889 0.296
+Hard Pruning 11.1× 7.46× 1.57× 29.32 0.887 0.311

A.3. Additional Datasets Evaluation
Table 5 and Table 6 present the average reported met-

rics for each pruning method across all scenes in the Tanks
& Temples and Deep Blending datasets, respectively. The
Comp column reports model size compression in terms of
Gaussian count, FPS reports rendering speed-up, and Train
reports training time speed-up, all with respect to the base-
line 3D-GS model. PSNR, SSIM, and LPIPS are also
recorded. The best and second best value for each metric
are color coded; lossless methods are underlined.



Table 7. Average execution time (milliseconds) of each function across all scenes. This experiment ablates the StopThePop [27] Tile-
Based Culling method with warp-level load balancing against our AccuTile algorithm. For each method, execution times are averaged over
three runs, with each run rendering the test set 20 times to reduce variance. The fastest times are highlighted. Our AccuTile algorithm
outperforms the Tile-Based Culling method in overall runtime by a notable margin. For detailed analysis, see Section A.4.

Method Preprocess Inclusive Sum Duplicate with Keys Radix Sort Identify Tile Ranges Render Overall

Baseline 0.665 0.046 0.568 1.551 0.083 4.469 7.457
Tile-Based Culling [27] 0.811 (0.820x) 0.046 0.450 (1.263x) 0.609 (2.548x) 0.035 (2.341x) 2.027 (2.205x) 4.051 (1.841x)
AccuTile (Ours) 0.659 0.046 0.194 (2.931x) 0.610 (2.541x) 0.035 (2.338x) 2.042 (2.189x) 3.660 (2.038x)

Table 8. Average execution time (milliseconds) of each scene. This experiment ablates the StopThePop [27] Tile-Based Culling method
with warp-level load balancing against our AccuTile algorithm by breaking out the per-scene execution times, which were averaged in the
Overall column of Table 7. The fastest times are highlighted. Our AccuTile algorithm outperforms Tile-Based Culling on all scenes.

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 14.034 4.977 7.025 7.914 6.103 11.025 8.562 5.776 7.088 6.993 4.872 7.253 5.322
Tile-Based Culling [27] 6.609 2.674 3.261 3.474 3.888 6.994 4.741 2.997 3.058 4.417 2.860 4.131 3.554
AccuTile (Ours) 5.880 2.401 2.989 2.933 3.478 6.433 4.490 2.578 2.726 3.965 2.729 3.671 3.300

A.4. StopThePop Tile-Based Culling Ablation

We ablate our AccuTile algorithm against the StopThe-
Pop [27] Tile-Based Culling method in Tables 7 and 8. Tile-
Based Culling computes a precise Gaussian-to-Tile map-
ping in two steps: (1) Similar to our SnugBox method, a
tight, opacity-aware bounding box is computed per Gaus-
sian; however, due to the use of thresholds in their code,
not all bounding boxes are tight. (2) Each tile touching
the bounding box is iteratively examined to determine if it
should be included in the final Gaussian-to-Tile mapping;
warp-level load balancing is used to accelerate this process.

For this ablation, we update the 3D-GS rasterizer with
the Tile-Based Culling code to isolate its runtime speed-
up. All warp-level load balancing code is included to en-
sure that we compare against the most optimized version
of the method. As noted in the StopThePop codebase, a
padded alpha threshold is required to accurately compute
bounding boxes, which, by extension, prevents undercount-
ing Gaussian-to-Tile mappings. No padded alpha threshold
is provided, so we perform this ablation without it. To en-
sure a fair comparison, we train three models for each scene
and measure execution times with the baseline 3D-GS, Tile-
Based Culling, and AccuTile renderers on each one.

Table 7 shows that our AccuTile method significantly
outperforms Tile-Based Culling on Preprocess and Dupli-
cate with Keys. Since Tile-Based Culling iterates over all
candidate tiles while AccuTile does not, it requires more
computation and induces a markedly higher runtime cost
even with warp-level load-balancing. Surprisingly, Tile-
Based Culling slightly outperforms AccuTile in the down-
stream functions Radix Sort, Identify Tile Ranges, and Ren-
der. However, we observe that this is caused by the afore-
mentioned under-counting of Gaussian-to-Tile mappings;

this marginal improvement disappears when padded alpha
thresholds are introduced, further slowing down Preprocess
and Duplicate with Keys. Additionally, as reported by Ta-
ble 8, our AccuTile method consistently outperforms Tile-
Based Culling across all scenes.

A.5. Per-Scene Metrics
PSNR, SSIM, LPIPS, FPS, and training times for each

scene from the Mip-NeRF 360, Tanks&Temples, and Deep
Blending datasets that was used in 3D-GS [14] are recorded
in Tables 9, 10, 11, 12, and Table 13, respectively. The
operation in each row is applied cumulatively to all of the
following rows.



Table 9. PSNR ↑ on each scene after cumulatively applying each function.

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 25.10 32.42 29.14 21.41 27.31 31.49 31.66 26.78 22.62 22.01 25.40 28.18 30.00

+SnugBox 25.12 32.36 29.09 21.45 27.31 31.61 31.70 26.78 22.54 21.97 25.41 28.27 30.09
+AccuTile 25.13 32.42 29.13 21.43 27.33 31.65 31.68 26.80 22.58 22.00 25.45 28.23 30.00
+Soft Pruning 25.09 31.91 28.74 21.35 27.16 30.83 31.32 26.88 22.57 21.74 25.34 28.44 30.14
+Hard Pruning 24.78 31.29 28.28 21.21 26.70 29.91 30.99 26.79 22.51 21.71 25.20 28.50 30.14

Table 10. SSIM ↑ on each scene after cumulatively applying each function.

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 0.747 0.948 0.916 0.589 0.857 0.933 0.927 0.770 0.636 0.815 0.883 0.880 0.891

+SnugBox 0.749 0.948 0.916 0.591 0.857 0.933 0.928 0.771 0.636 0.815 0.883 0.880 0.892
+AccuTile 0.749 0.948 0.916 0.590 0.857 0.933 0.927 0.771 0.637 0.816 0.883 0.879 0.891
+Soft Pruning 0.741 0.941 0.904 0.582 0.848 0.921 0.920 0.776 0.630 0.803 0.878 0.884 0.893
+Hard Pruning 0.704 0.927 0.878 0.561 0.815 0.894 0.905 0.765 0.590 0.773 0.868 0.882 0.892

Table 11. LPIPS ↓ on each scene after cumulatively applying each function.

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 0.244 0.183 0.185 0.359 0.122 0.118 0.200 0.242 0.346 0.208 0.147 0.291 0.284

+SnugBox 0.241 0.183 0.185 0.358 0.122 0.117 0.199 0.241 0.345 0.208 0.147 0.291 0.284
+AccuTile 0.242 0.183 0.185 0.359 0.122 0.117 0.199 0.241 0.344 0.207 0.147 0.292 0.284
+Soft Pruning 0.271 0.197 0.212 0.379 0.147 0.141 0.222 0.258 0.390 0.237 0.165 0.297 0.295
+Hard Pruning 0.333 0.231 0.260 0.419 0.213 0.198 0.260 0.288 0.463 0.291 0.191 0.313 0.308

Table 12. FPS ↑ on each scene after cumulatively applying each function. Speed-ups ↑ are recorded in (parentheses).

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 71 201 142 126 164 91 117 172 140 141 200 138 185

+SnugBox 154 358 276 301 267 146 197 335 301 228 320 247 282
(2.15×) (1.78×) (1.95×) (2.39×) (1.62×) (1.60×) (1.68×) (1.95×) (2.15×) (1.61×) (1.60×) (1.79×) (1.53×)

+AccuTile 168 413 330 332 285 155 221 378 315 248 343 272 294
(2.35×) (2.05×) (2.33×) (2.64×) (1.73×) (1.70×) (1.89×) (2.20×) (2.25×) (1.75×) (1.71×) (1.97×) (1.59×)

+Soft Pruning 241 601 505 497 419 255 425 612 549 379 518 423 477
(3.37×) (2.99×) (3.56×) (3.95×) (2.55×) (2.80×) (3.63×) (3.56×) (3.92×) (2.68×) (2.59×) (3.06×) (2.58×)

+Hard Pruning 662 978 842 1122 825 640 809 1277 942 724 1392 957 1149
(9.25×) (4.87×) (5.94×) (8.91×) (5.02×) (7.03×) (6.90×) (7.42×) (6.73×) (5.12×) (6.95×) (6.93×) (6.21×)

Table 13. Training time ↓ in minutes on each scene after cumulatively applying each function. Speed-ups ↑ are recorded in (parentheses).

Mip-NeRF 360 Tanks & Temples Deep Blending
Method bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline 31.9 20.4 24.1 24.1 32.3 27.8 23.7 24.1 24.2 11.1 13.4 24.8 19.5

+SnugBox 28.2 19.2 21.8 22.7 29.9 25.8 21.4 22.9 22.4 9.8 12.3 21.7 17.8
(1.13×) (1.07×) (1.11×) (1.06×) (1.08×) (1.08×) (1.11×) (1.05×) (1.08×) (1.13×) (1.09×) (1.14×) (1.09×)

+AccuTile 27.8 19.0 21.3 22.6 29.4 25.5 21.1 22.7 22.3 9.7 12.2 21.5 17.7
(1.15×) (1.08×) (1.13×) (1.07×) (1.10×) (1.09×) (1.12×) (1.06×) (1.08×) (1.14×) (1.09×) (1.15×) (1.10×)

+Soft Pruning 23.1 17.0 18.6 19.5 23.2 20.3 18.3 19.3 18.9 8.3 9.7 17.3 14.2
(1.38×) (1.20×) (1.30×) (1.23×) (1.39×) (1.37×) (1.30×) (1.25×) (1.27×) (1.33×) (1.38×) (1.43×) (1.37×)

+Hard Pruning 19.7 16.0 17.7 17.5 20.3 18.7 16.9 17.1 16.9 7.2 8.3 15.3 12.8
(1.62×) (1.28×) (1.36×) (1.38×) (1.59×) (1.49×) (1.40×) (1.41×) (1.43×) (1.55×) (1.61×) (1.62×) (1.52×)
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