FedCS: Coreset Selection for Federated Learning

Supplementary Material

A. Preliminaries for Proof of Theorem 4.1

Notation: Necessary notations are introduced as follows.
. Wgt): local weight vector on client ¢; at epoch ¢.
e D7: coreset on client ¢; after pruning.
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We present the preliminary lemmas used for proof of
Theorem 4.1. We will denote the expectation over the sam-
pling random source S(t) as Es(4) and the expectation over

all the random sources as E.

Lemma A.1. Suppose F; is L-smooth with global minimum
at w7, then for any w; in the domain of F;, we have that
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Lemma A.2 (Expected average discrepancy between w(*)
and wl@ for i € S(t)).
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Moreover, for any ¢, there is a ¢ such that w(tO) EtO)
and 0 < t — ty < T, because the selected chents are up-
dated with the global model at every 7 . Hence, even for an
arbitrary ¢, we have the difference waf ) wi ||? is upper
bounded by 7 updates. With non-increasing 7, over ¢ and

Nty < 274, equation (22) can be further bounded as,
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By taking expectation over (23),
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Lemma A.3 (Upper bound for expectation over
|w® — w*|)). By using E [], we have the upper



bound of the total expectation over all random sources as:

1 *
Bflw® —w* %) < —B[ 3 Wl —w'[?).  @9)
1€S(t)
Proof.
E[lw® — w*||?] Z wy —w?]
zES(t)
1 *
=E[|— > (W —w)|’
iE€S(t)
1 *
< B[y w -w o)
1€S(t)
B. Proof of Theorem 4.1
with g = L3 s g:(w'" ¢t), we have that:
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Then we defined:
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First, to obtain the upper bound of A;(28):
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By using the Cauchy inequality and AM-GM inequality,
we can derive a new inequality:
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Due to the Lemma A.1,we can get a new inequality: Next, in expectation, E[A5] = 0 due to the unbiased gra-
dient. Then, we obtain the upper bound of Az (30).
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Due to the p-convexity of F; (Assumption 4.2): Finally, we can bound A4 by using the bound of variance
! of stochastic gradients (Assumption 4.3):
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Due to the Lemma A 2: A4 (38), we have that the expectation of equation (27) is
- bounded as:
— Z lw® —wi|?
zeS
2L77t (t) * *
N g@)(ﬂ(wi R Efjw(+D) — w2
’ ) wwy2y el 2
2 * o < E[w® - w*|?] - R Z Iw! — w1
- T8 Y (F(w" . D) — Fi(w", D)) st
1€S(t) ) oo t2(72
2 4Ln?
<ot S W - w + gl S (R(wl?, D}) - 7))
m 1€S(t) 1€S(t)
2 27715 * * *
+ 20 S (mw®, D7) — FY) ~ Y[ Y (F(w[".D}) ~ Fi(w", D))l
ies(t) i€S(t)
2 (39)
~ N (F(w, D) — Fi(w®,D})). (36)

i€S(t) Due to the Lemma A.3, we can get the bound of equation
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Due to the p-convexity (Assumption 4.2):
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Due to the Lemma A.1 and the AM-GM inequality and
Cauchy—Schwarz inequality:

Ut

[< VFlv(w(t), Df),wl@ —w® >

i€S(t)

1% v * *
+§||W§t) _W(t)Hﬂ o Et Z (Fy(w', D) - Fy)
i€S(t)

Ut 0) « L p
<t [
<2 Y LE®O.D) - F)+ (- )

1€S(t)

o = w2 = 237 (F(wl. D7) - FY)

i€S(t)
v *
=- Et(l -nlL) Y (F(w, D) - FY)
ies(t)
UtM ®) _ w®2
+(2n7n 2: [[w; 1.
1€S(t)

(40)

We can easily prove that 1"(12;77:““) < 1, thus we can
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By using equation (47), we can bound AS (41) as:
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Due to the Definition 4.1 and 4.2, we can get:
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By defining Ay1 = E[|[wtH) —w*||2], B = (1+2),
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C. Comparison of Dataset Pruning Methods on
Data Distribution Heterogeneity

Notation: Necessary notations are introduced as follows.

© VE (w,D;) = =300 VE(fw (xi5)  i)-

* n;°: number of samples on client ¢; after pruning.

* n": number of samples on all clients after pruning.

* n;°: number of samples belonging to target £ on all
clients after pruning.

According to Definition 4.1, We can obtain a norm I" to
measure the heterogeneity of data distribution. A smaller
gamma represents lower heterogeneity in data distribution.
Now, we introduce a assumptions utilized for our analysis.

Assumption C.1. Assuming the total number of clients is
sufficiently large, due to the law of large numbers and the
consistency of the pruning strategy, the distribution of the
global dataset formed across all clients remains nearly un-

changed before and after pruning, even if data distribution
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on each clients is unbalanced, i.e.

In FL scenarios, a large number of clients are typically
involved, making our Assumption C.| reasonable.

Assumption C.2. When the number of samples on the

client is sufficiently large, the data distribution remalns al-
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most unchanged before and after pruning. i.e. nie

According to the law of large numbers, it can be proven
that Assumption C.2 is reasonable.

When ¢ is sufficiently large, the weight of the global
model is:
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The weight of local model are:
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C.1. Effective of Double Pruning on Data Distribu-
tion Heterogeneity

For dataset pruning methods that can select representative

samples from each class, we can get E[V/(F] ~ V5. Ac-

w0 wlttD),

Double Pruning significantly reduces samples in the

D) closer to w(ttD),

) closer to F;(D}, w})

”Large-capacity Class,” bringing w,
which ultimately brings F; (D}, w
and reduce I" (Equation (13)).

C.2. Effective of Different Coreset Selection Meth-
ods on Data Distribution Heterogeneity

We can divide n¥ samples of class k on client i into N re-
dundant samples, N? decision boundary samples, and N
hard samples. Then the average gradient of class k on client
1 can be represented as :
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where N/, V€f7 ,NE, V@fd, NP, V[fh represent the num-
ber and the average gradients produced by the redundant
samples, decision boundary samples, and hard samples, re-
spectively, for class k£ on client . Global average gradient
of class k can be represented as :
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where N,, E[VI*' |, Ny, E[VI*], N, E[VIF'] repre-

sent the global number and the expectation of global aver-

age gradients produced by the redundant samples, decision

boundary samples, and hard samples, respectively, for class

k.

Since redundant samples provide almost no gradient dur-
ing training, E[|V/*||] ~ || V5| ~ 0. As the hard sam-
ples contain a large number of extremely rare examples, the
unique extreme information in these samples often causes
the resulting gradients to be noisy, we rewrite average gra-
dient produced by the hard samples as:
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Table 5. The Top-1 accuracy (%) of coreset selection methods with
VGG-11 on CINIC-10.

a=0.1, pé:(]l

Methods
pl =03 p/ =05 p/ =07 p/ =09
EL2N 56.23+09 53.51+108 50.23+142 46.76+145
Moderate  56.76+072 55.76+07 55.16+0s2 52.73+0s7

GM 57.03+060 56.74+063 55.68+071 54.02+078

GradND  55.80=118 53.02+124 49.68+132 47.18+13
Forgetting  53.49+0s0 51.93=100 50.67=140 49.81+136
Random  56.65+102 55.78+1s1 54.46+206 53.07+234

FedCS(ours) 57.58+0s3 57.39+091 56.72+095 55,08+097
Whole Dataset 57.03+061 57.03+061 57.03+061 57.03+061

NE[VE'] = NG E[VEF] + E[VEE"].  (70)

If DC Score is used to select samples near the decision
boundary, the weight of local model is:
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where 17}, denotes the num of samples belongs to targert k
on client ¢; after pruning.
The weights of global model is:
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When the number of samples is sufficiently large,
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E[Vek ] and V5 will be very close.

If a strategy for selecting hard samples is used for core
set selection, the weight of local model is:
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The weight of global model is:
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Since noise gradients are generated randomly, the direc-

tion of ]E[Wn] and Viffn will be significantly different.



Therefore, compared to the pruning strategy that selects
hard samples, the differences between ik D
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in DC Score is smaller, resulting in more similar wg +1) and

wtth) ultimately leading to a smaller I' (Equation (13)).

most identical, but the difference between w

D. Supplementary Experiments

VGG-11 on CINIC-10. CINIC-10 extends CIFAR-10
with the down-sampled ImageNet images consisting of 90K
training images and 90K testing images. As shown in Table
5, our proposed method demonstrates the best performance
across various pruning rates with an accuracy improvement
of 0.55%-8.32% over other methods. Although overfitting
does not occur, the accuracy of FedCS with a low prun-
ing rate still exceeds that of training with the entire dataset
when all clients participate in update. It further confirms the
superiority of FedCS compared to other SOTA methods.



