Neural Motion Simulator
Pushing the Limit of World Models in Reinforcement Learning

Supplementary Material

A. Architecture

Linear Layer

Activation

(b) Residual Block

Residual Block
Residual Block

(a) Residual Network

Figure 7. Network architecture of residual networks.

Basic NN | Layers | Input Shape | Output Shape

Residual Network Fully-connected layer (B, Dinput) (B, Dp)
Activation (B, Dy) (B, Dy)
Residual Blocks (B,Dy,) (B, Dp)

Fully-connected layer (B, D) (B, Dougpu)
MLP Fully-connected layer (B, Dinput) (B, Dp)
Activation (B, Dy,) (B, Dy)
Hidden Fully-connected Blocks (B, Dy) (B, Dp)

Fully-connected layer (B, Dy) (B, Dougpur)

Table 8. Basic NNs

Module | Basic NN | Input Shape | Output Shape
Position Encoder (M) | Residual Network (B, Dy,) (B, D, x (D, +1)/2)
Rearrange (B,Dy x (Dy +1)/2) (B, Dy, D,)
State Encoder (B) Residual Network (B, D, + D,) (B, D,)
Action Encoder (1) MLP (B,D,) (B, Dy)
Corrector Residual Network | (B, D, + D, + D,) (B, D,)
Table 9. MoSim Modules
. Position State Action
Model Size Encoder Encoder Encoder Correctors
Ng Dy |Ng Dy |Ng Dy |Nc Npg Dy
Small 3 64 3 64 1 32 1 5 64
Medium 3 64 3 64 3 32 1 5 128
Large 3 128 3 128 3 128 3 5 128

Table 10. MoSim Parameters

For the position encoder and state encoder in the predic-
tor, as well as the corrector, we use residual networks as
shown in Figure 7a, with the residual block design illus-
trated in Figure 7b. For the action encoder in the predictor,

Prediction Horizon ~ Cheetah Reacher Acrobot Panda Hopper Humanoid Go2
DreamerV3 16 16 16 16 16 16 16
MoSim 60 >1000 99 >1000 51 42 200

Table 11. Prediciton Horizon

we use a standard MLP composed of multiple linear layers
and activation layers. In the position encoder, the output
vector of length n(n 4 1)/2 (where n is the dimension of
velocity) from the residual network is rearranged into an
n X n lower triangular matrix L, and the symmetric positive
definite matrix M is then obtained by computing LLT.

The number of correctors can be adjusted based on the
complexity of the task. We use one corrector for most tasks,
while two correctors are used for the humanoid task.

The specific architectural parameters of the models are
detailed in Tables 8, 9, and 10, in which B refers to batch
size, Dinput, Douput; Dy Dg, Dy, D, respectively refer to
dimension of input, output, latent variable, position, veloc-
ity, action.

B. Experimental Details for Latent Evaluation

In subsection 3.2, we compared the predictive capabilities
in the latent space of MoSim and TD-MPC2 using expert
data, as described in the main text. For the comparison on
random data in table4, we still used the provided TD-MPC2
checkpoints, since training TD-MPC2 on random data leads
to a meaningless latent space.

In this experiment, 1 step for MoSim is equivalent to
control step * action repeat. Here, the con-
trol step refers to the duration of a single action in terms of
physics timesteps in the DM Control environment, while the
action repeat follows the default TD-MPC setting of 2. For
example, in the Humanoid environment (control step
= 5,action repeat = 2), 1 step actually requires us
to recursively predict 2 = 5 = 10 physical steps, for ex-
perience evaluation, we set action repeat = 1, control step =
1.

C. Prediction Horizon

To more directly demonstrate the improvement in MoSim’s
prediction capability, Table 11 uses the MSE loss of Dream-
erV3 at a 16-step prediction horizon as a reference. It
presents the prediction horizon at which MoSim achieves
the same loss, providing a more intuitive measure of
MoSim’s predictive performance.

Task Name Humanoid-walk Hopper-hop
Horizon 1000 1000

Table 12. The minimum step limitation required for zero-shot
learning in two additional tasks.(1000 is typically the default step
limit in reinforcement learning simulation environments.)

D. Zero-Shot Learning Requirements

In subsection3.4, we explored the minimal step limitation
required to achieve zero-shot learning. We additionally pro-
vide the requirements for two more tasks. The results are
shown in Table 12.

E. MyoSuite Dataset Prediction Results

We also conducted predictions on the MyoSuite dataset.
To satisfy MoSim’s assumption of the Markov prop-
erty, instead of directly using the muscle-tendon model
in MyoSuite (where actions in this case form a second-
order dynamic system, causing the overall system to violate
the Markov property), we directly used the motor-tendon
model. Specifically, we obtained the force on each tendon
and learned its effect on joint states.

F. Experimental Settings for Residual Flow
Penalty

To ensure the penalty term is on the same scale as the orig-
inal reward, we use the log probability density of the cur-
rent state under the flow-based model as the penalty term
and add it directly to the original reward. To normalize the
penalty term within the range of [—1, 1], we apply a sigmoid
function with a custom inflection point and then subtract 1.
This transformation ensures that the penalty term is appro-
priately scaled for reinforcement learning.
Thus, the final reward function is given by:

R= Roriginal + Rpenalty &)

where the penalty term Rpeqary is defined as:

log P(s) —
Rpenally =0 (gEM)T> -1 (10)

where log P(s) is obtained using the normalizing flow
model as:

log P(s) = log Poase () 4 log | det J| (11)
with:
x,log|det J| = f~1(s) (12)

where:
+ f~1is the inverse transformation of the normalizing flow
model,

Rewards

Cheetah Run
1000

500

250k
Steps

Figure 8. offline cheetah run.

Pyase () is the probability density function of the base dis-
tribution (e.g., Gaussian),

J is the Jacobian matrix of the transformation,

o(x) = {3i== is the sigmoid function,

T is the custom inflection point,

