
GEM: A Generalizable Ego-Vision Multimodal World Model for Fine-Grained
Ego-Motion, Object Dynamics, and Scene Composition Control

Supplementary Material

7. Frequently Asked Questions
Q1: Will you share the code and dataset publicly?

All codes and model checkpoints are publicly available
at our GitHub repo including all scripts used for pseudo-
labeling for reproducibility. We additionally intend to re-
lease the pseudo-labels of the dataset.
Q2: How accurate are the trajectories pseudo-labeling?

We evaluate our pseudo-labeling pipeline which con-
sists of calibration, depth estimation, and finally SLAM,
on Nuscenes. We show the results in Sec. 8.1 based on
the Average Displacement Error (ADE) which are 0.48 me-
ters with scale compensation and 1.68 meters without scale
compensation. Although both these numbers are accept-
able, this difference marks the inherent error in the monoc-
ular depth estimator model we use. We find the accuracy of
the trajectories high enough to use them as control signals
for GEM.
Q3: Are the depth and images synced?

By observing the generations, it is evident that the
modalities are aligned. This alignment can be attributed
to several factors: (1) both modalities are encoded using
the same model, ensuring similar latent representations and
preserving spatial correspondences; (2) they are processed
simultaneously through the network, allowing it to learn
and model relationships between the modalities; and (3)
the same sampler is used for both. These factors collec-
tively contribute to the alignment observed between the two
modalities. Refer to our website to see many examples on
both modalities.
Q4: Why are different controls added with different
techniques?

For ego motion, we empirically find that it is sufficient to
incorporate the trajectories using additional cross-attention
layers. However, this was not the case for the other controls
that did not show similar effectiveness when added through
additional cross attention layers. For object and human pose
controls, where fine-grained details in the encoding of the
scene composition is needed, it is necessary to incorporate
spatial information. Therefore, we use specific networks to
project these controls and add these features to the output of
the backbone’s input blocks.
Q5: What’s the strategy used to evaluate the different
controls?

Our evaluation strategy for all control techniques in-
volves applying the control, detecting it in both the gen-
erated video and the ground truth, and comparing the re-
sults using a specific metric. For example, for ego motion

control, we apply the trajectory control and get the gener-
ated video. For datasets without ground-truth labels, we
use our pseudo-labeling pipeline to detect the trajectories in
both the generated video and the ground-truth video. We
then use Average Displacement Error (ADE) for compari-
son. We use similar technique with other controls, each hav-
ing a specific evaluation metric. If no similar world model
can perform the same control strategy, we compare our con-
ditional generations against the unconditional ones to show
the effectiveness of our control.
Q6: Is data curation needed? What’s the motivation
behind it?

We incorporate a large amount of uncurated data into the
dataset. Many samples suffer from poor camera distortions,
extreme blurriness, or are completely black. Therefore, a
quality filtering step is necessary. Furthermore, the dataset
contains numerous videos with minimal activity, e.g., long
highway drives. To enhance training efficiency, we filter the
dataset based on diverse scene characteristics. Furthermore,
to achieve precise control over object movements within a
scene, the training data must: (1) include diverse interac-
tions and dynamics, and (2) capture fine-grained details of
the objects. This ensures the training process supports ac-
curate control mechanisms while maintaining efficiency.
Q7: Are there any evidence of knowledge transfer to the
other domains ?

To assess cross-domain knowledge transfer for GEM,
finetuned on human and drone domains, we finetune SVD
for the same 5 epochs. GEM provides two key benefits: (1)
faster convergence in depth generation—SVD completely
fails to generate depth as shown in Fig. 8, (2) improved con-
trollability as shown in Fig. 9.

Drones-SVD Drones-GEM Human-SVD Human-GEM

Figure 8. Depth outputs of finetuning GEM v.s. finetuning SVD.

Q8: Why does GEM have higher FID and lower FVD
than Vista?

FID difference between GEM and Vista in unconditional
generations stem from their training strategies. GEM’s
fine-grained control necessitates learning spatio-temporal
dependencies from the control signals. Therefore, GEM
uses controls in both training stages, while Vista is trained

https://github.com/vita-epfl/GEM
https://vita-epfl.github.io/GEM.github.io/

Figure 9. Video frames showing control behavior. Top: Control-
GEM (human), Bottom: finetuned Control-SVD (human). GEM
shows better controllability when finetuned on human egocentric
domain in comparison to finetuning SVD.

on OpenDV without controls and finetuned with LoRA on
Nuscenes, likely improving FID by directly adapting to dis-
tributions. Furthermore, GEM’s data curation is designed
to enhance controllability by emphasizing diverse dynam-
ics, likely contributing to its superior FVD.
Q9: Can DINO features be used to insert objects with
different appearances?

Indeed, DINOv2 encode appearance; their strong repre-
sentation capabilities ensure visual consistency of inserted
objects. We show examples of inserted objects with differ-
ent appearances, via extracting DINOv2 features of specific
vehicles, in Fig. 16.
Q10: What happens when the control signal is Out of
Distribution (OOD)? For instance, what happens if a car
is placed in the sky?

GEM typically aims to remain in distribution with the
given control. As illustrated in Fig. 10, positioning a car
on the sidewalk results in a car being generated on the bike
lane. We observe that as the control becomes increasingly
OOD, the quality of the generations deteriorates. For en-
tirely OOD controls, such as placing a car in the sky, GEM’s
outputs result in chaotic generations.

Figure 10. Video frames on Out of Distribution (OOD) control
signals. Each row shows four frames from one video.Top: Insert-
ing car on sidewalk. Bottom:Inserting car on train rails.

8. Method
8.1. Pseudo-labeling
Depth. We generate depth information for (1) trajectory
pseudo-labeling and (2) generating the spatial information
of the scene. For depth estimation, we utilize the metric
version of Depth Anything V2-Small [73], a state-of-the-art

depth estimator known for its accuracy on the KITTI dataset
and per-frame consistency.
Ego-trajectories. To estimate ego-trajectories, we first
determine the camera’s intrinsic parameters with Geo-
Calib [58], using a pinhole camera model. For videos with
radial distortion, we empirically find that radial camera cal-
ibration yields improved results. Using the estimated in-
trinsics and the RGB-depth output from Depth Anything
V2, we then apply DroidSlam [56], an RGB-D SLAM algo-
rithm. The use of metric depth is crucial to help with scale
ambiguities. The output of the SLAM algorithm consists

of a sequence of camera-to-world matrices Ai =


R T

0 1

�

for i 2 {1, . . . , N}. For driving scenes, we extract X and
Z displacements to have Bird-eye-view trajectories, and for
ego-centric domains, we include Y displacement and the ro-
tations in the Ortho6D format [86].

We evaluate our trajectory pipeline on the NuScenes
dataset using ground truth trajectories as a benchmark. As
shown in Tab. 4, the Average Displacement Error (ADE)
is 1.64 m when scale is not compensated, relying solely
on the depth pseudo-labels to guide the scale. However,
when we compensate for the scale using ground truth la-
bels, the ADE is reduced to 0.48 m. This result highlights
the potential value of improving depth annotations, as bet-
ter depth quality could further enhance trajectory accuracy.
Despite this limitation, our pseudo-labeled trajectories are
sufficiently accurate to guide the model in controlling the
motion of the ego vehicle. In our use case, the primary re-
quirement is for the trajectories to approximate the motion
of the ego agent closely enough to enable the model to gen-
eralize and control the vehicle in new scenarios effectively.

Nuscenes
ADE (m) #

With Scale Compensation 0.48
Without Scale Compensation 1.63

Table 4. Trajectory pipeline evaluation on Nuscenes

Human Pose. We generate human poses using DW-
Pose [75]. The annotation of each human is 17 keypoints
describing all the body joints.

8.2. Sampling Algorithm
Algorithm 1 introduces the sampling technique used with
dynamic noise schedule. The scheduling matrix S governs
the progression of noise levels across frames, with values
adjusted based on the temporal relationship between the
scheduling index and frame indices. The noise schedule
dynamically adjusts to three different phases: initialization,
autoregressive and termination. The initialisation starts de-
noising the frames at different timesteps till the first frame

Algorithm 1 Sampling with Dynamic Noise Schedule

Require: Initial noisy frames x 2 RF⇥H⇥W , noise sched-
ule {�t}Tt=1, chunk size C.

1: Compute the scheduling matrix S 2 RH⇥F :

S(m, t) =

8
><

>:

�0 if t > m

�m�t if m� t < |�|
�|�|�1 otherwise

2: i = 0 , f = 0 . Set row index and frame index to 0
3: while frames remain to be denoised do
4: Apply denoise step

x[f : f +H] = x[f : f +H] +�t,

�t = DenoiseStep(x, S[i, :], S[i+ 1, :])

5: if f = 0 (first iteration) then
6: Initialization Phase:
7: Frames x[f : f + H] begin denoising with

scheduling matrix S.
8: else if F � f > C (frames are appended) then
9: Autoregressive Phase:

10: Update scheduling matrix S by shifting
columns and adding a new column:

S = ShiftLeft(S), S[:,�1] = {�t}Tt=1

11: else
12: Termination Phase:
13: Stop appending new frames. Continue denois-

ing with the remaining columns of S:

S = S[:, : F � f]

14: end if
15: if fully denoised frame then
16: Save the fully denoised frame x[f].
17: Increment f = f + 1.
18: end if
19: i = i+1
20: end while
21: Return fully denoised frames xdenoised.

is fully denoised and the last frame just started a few de-
noising steps. Autoregressive phase gets a fully denoised
frame at each step which gets saved and a new column is
appended for a new frame. Once we cannot append any
more frames, termination starts and the rest of the frames
are progressively denoised without appending new ones.

8.2.1. Time complexity
Here we discuss the time complexity of our sampling algo-
rithm. Assume we want to generate a video of F frames,

each denoised in d = 25k steps. In the initialization phase,
frame 1  i  25 gets denoised (25 � i + 1)k times, re-
quiring 25k forward passes of the model. After this phase,
the first frame is clean and the 25th frame is denoised for
k steps. In the autoregressive phase, we remove the clean
frame at the beginning of the window, and append a new
noisy frame at the end. This is followed by k denoising
steps, yeilding a new clean frame, hence each new frame
needs only k forward passes of the model and the autore-
gressive phase needs (F � 25)k forward passes. Finally, in
the termination phase all the frames currently in the window
get fully denoised. The last frame already being denoised k

steps, it takes 24k forward passes to finish the termination
phase. Summing these phases, our method requires F+24

25 d

forward passes of the model to generate a F frame video
with each frame denoised through d steps. On a GH200
GPU, each forward pass takes around 1 second, initializing
the sampler around 20 seconds, and decoding the denoised
latent features takes 0.25 seconds per frame. One could use
the above explanation and estimates to calculate the infer-
ence time based on their needs. Tab. 5 provides specific
examples, illustrating the time required to generate videos
with 25, 50, and 150 frames, each frame undergoing d = 50
denoising steps.

8.3. Data Curation
Since our focus is on learning a world model, we emphasize
curating data that ensures in-distribution samples with reli-
able control rather than prioritizing aesthetically pleasing
generations. To achieve this, we carefully select filtering
methods and thresholds to balance efficiency, quality, and
adherence to the desired data distribution.

However, even after filtering based on the aesthetic
score, several undesirable samples remain, including overly
blurry videos, night recordings with minimal visibility, or
clips affected by dirty camera lenses. To address these is-
sues, we additionally utilize PIQE as a distortion detec-
tor [59]. While a PIQE score above 50 typically indi-
cates poor quality, the diversity of our dataset—including
scenes such as urban environments, rural highways, and
night recordings—necessitates a higher threshold to min-
imize false positives. We therefore set the threshold to
70–80, achieving a balance that minimizes false positives
(e.g., retaining valid night driving scenes) while removing
the problematic clips mentioned earlier.

Figure 11 presents both high-quality samples based on
the PIQE and aesthetic scores, as well as examples with
low-quality scores. Additionally, Figure 11c shows ex-
amples of images with a high aesthetic score (indicating
good quality) but also a high PIQE score. These results
demonstrate that incorporating PIQE into the quality filter-
ing pipeline effectively removes additional unwanted sam-
ples.

Frames F Init time (s) Sampling time (s) Decoding time (s) Total time (s)

25 20 98 6 124
50 20 148 12 180
150 20 348 36 404

Table 5. Inference time calculation examples for different number of frames.

For both levels of diversity filtering, we employ DINOv2
(large), which we found to outperform alternatives such as
CLIP and SSCD [46] in representing diversity within and
across video clips.

For cross-clip diversity filtering, we compute the DINO
feature vector of the middle frame of each video and cal-
culate the cosine similarity between all resulting vectors.
On our dataset, even high thresholds of 0.80 filtered out en-
tire videos with monotone highway drives featuring little
diversity. Consequently, we opted for thresholds between
0.90 and 0.98 for our training. Example frames with cross-
similarity � 0.9 are shown in Figure 12a.

For intra-clip diversity, we aim to measure meaningful
changes within a clip. In driving videos, the typically high
ego-motion makes a motion score based solely on optical
flow unsuitable (see examples in Figure 12d).

To address this, we process the start and end frames
through DINO, extract the feature maps, and compute
the cosine similarity between the feature vectors of these
frames. We then count the number of tokens with cosine
similarity  0.5 and normalize by the total number of spa-
tial features. This results in small thresholds (ranging from
0 to 0.05) that effectively capture intra-clip diversity for
training.

Finally, we observed that DINO occasionally failed to
compute meaningful features for certain samples, allowing
some static videos to evade filtering. To mitigate this, we
additionally apply a motion score based on the average opti-
cal flow magnitude between the start and end frames, using
a low threshold of 0.02 to further filter such cases.

9. Implementation Details

As a baseline, we employ GH200 GPUs with 100 GB of
memory. Due to the increased size of our network, we in-
corporate activation checkpointing and optimizer sharding
to mitigate memory constraints, utilizing DeepSpeed [50].

9.1. Training Stages

Our training process builds upon the SVD video model
[4] and the EDM framework [36]. To achieve fine-
grained, high-quality control, we employ a two-stage train-
ing regime, detailed as follows:

Stage Filter Type Threshold Data (%)

Stage 1

Aesthetic Score  4.0 91%
PIQE � 70 89%
Intra- Similarity  0.02 80%
Motion Score 0.02 79%
Cross- Similarity � 0.98 76%

Stage 2

Aesthetic Score 4.2 91%
PIQE 70 89%
Intra- Similarity 0.02 80%
Motion Score 0.02 79%
Cross- Similarity 0.95 68%

Table 6. Percentage of remaining data after each filter step, starting
from 100%.

9.1.1. Control Learning Stage
In this stage, diverse control signals and modalities are in-
troduced. External modules that inject new information into
the network are initialized to zero. Given the wide variety
of information and tasks across spatial and temporal layers,
the entire network is trained without freezing layers or using
custom learning rates.

For DINO control, 0 to 10 frames are randomly sampled,
a region within these frames is selected, and the regions are
encoded using DINOv2 [44]. Following [14], tokens are
randomly masked to produce 0 to ntokens per frame, with
ntokens set to 16 to maintain sparsity. For identity training,
the same frames are used, with 0 to 4 source frames ran-
domly selected and 0 to 3 target frames sampled per source
frame, as described in Sec. 3.2.2. Optical flow for the iden-
tity training is obtained using RAFT [55].

The initial resolution is 320 ⇥ 576, with a learning rate
of 8 ⇥ 10�5 and an effective batch size of 1024. Training
spans two epochs (15k steps), with control learning verified
as detailed in Sec. 5.4. Weak filtering thresholds are applied
to maximize training throughput while emphasizing intra-
clip diversity to enhance variability in control signals.

9.1.2. High-Resolution Fine-Tuning
This stage aims to refine the quality of the control. Train-
ing is conducted at a higher resolution of 576 ⇥ 1024. As
DINO control operates at a downsampling factor of 16, this
resolution allows for four times more opportunities for to-
ken placement. To maintain sparsity, the number of retained

tokens after masking is increased to ntokens = 32.
Training continues with a reduced learning rate of 4 ⇥

10�5 and an effective batch size of 512 for one epoch (6k
steps). Stricter filtering thresholds are applied during this
stage to ensure higher-quality outputs. The thresholds and
corresponding data retention percentages for the different
training stages are summarized in Tab. 6.

10. Additional Evaluation
Depth Generation. Tab. 7 presents GEM’s depth evalua-
tion using AbsRel and �, compared to DepthAnything V2’s
small and large models. Interestingly, while the training
labels are from the small model, results indicate GEM’s
depth generations align more closely with the large model
on OpenDV, more accurate model in the OpenDV dataset,
demonstrating improved depth accuracy over the input.

Nuscenes OpenDV
AbsRel # � " AbsRel # � "

GEM (vs ViT-S) 0.17 0.79 0.17 0.8
GEM (vs ViT-L) 0.2 0.75 0.13 0.84

Table 7. Depth generation quality comparison. Our model, de-
spite being trained on pseudo labels from the smaller model, GEM
generates slightly closer quality to the estimates of the larger
DepthAnything model [72].

11. Ablation Studies
Identity Evaluation. Showing the significance of adding
ID embeddings to the DINO tokens of different objects is
challenging. This is because the ID is primarily beneficial
in scenarios with ambiguous actions (e.g. two very close
objects or when moving an object and inserting another).
Therefore, we randomly chose a subset of 100 videos where
we can test the importance of adding ID labels. As shown
in Tab. 8, adding ID embeddings resulted in a slight de-
crease in the Controllability of Object Manipulation metric
(COM) error, from 22.4 pixels to 21 pixels. However, COM
is not an ideal metric for evaluating the role of ID embed-
dings in these scenarios. To better illustrate their impor-
tance, we provide examples in Fig. 13. These highlight the
critical role of ID embeddings in resolving ambiguities and
enabling more precise control when managing interactions
with adding different controls on different objects.

Depth. To investigate the significance of the depth
modality during training, we compare the quality and con-
trollability results when training GEM with and without
depth. We use FID and FVD as video quality metric and
COM for object motion controllability. As shown in Tab. 9,
incorporating depth leads to slight improvements in both

OpenDV
COM #

With object ID 21.0
Without object ID 22.4

Table 8. Comparison of adding ID embeddings for DINO tokens.

quality and controllability, highlighting its significance es-
pecially for controllability.

FID # FVD # COM #
GEM (w/ depth) 10.5/6.27 158.5/130.5 12.2/11.5

GEM (w/o depth) 13.3/6.36 179/129.13 13.6/12.4

Table 9. Comparison for GEM w/ and w/o depth. Training GEM
with depth slightly improves quality and controllability.

12. Qualitative Results
Figs. 14 to 17 show qualitative examples of our generations,
our controls, long generation and multimodal outputs.

(a) High-quality images, with high aesthetic score (� 4) and low Piqe score ( 50).

(b) Images filtered with aesthetic score  3 and Piqe score � 70.

(c) Images with high aesthetic score (� 4) but high Piqe score (� 80).

Figure 11. Visual examples for quality filtering.

(a) Images with a cross similarity � 0.90.

(b) Video clip with high intra-diversity of 0.24.

(c) Video clip with low intra-diversity of  0.02.

(d) Video clip with low intra-diversity of  0.02i, but high motion score (0.12).

Figure 12. Visual examples for diversity filtering.

(a) We move the car to the right while inserting another car to the left.

(b) We move the car to the left while inserting another car to the right.

Figure 13. Demonstration of moving an object while simultaneously inserting a new one nearby. We utilize DINO tokens of the car from
the initial frame and replicate them at specified locations and times (e.g., T = 0 and T = 10). Identity is added to tokens corresponding
across time. The DINO control is shown on the left, and the resulting generation is displayed on the right.

Figure 14. Example visualizations of GEM’s generated videos with lengths equal to the training horizon (2.5s, 25 frames) from OpenDV
validation set.

Figure 15. Example visualizations of GEM’s generated videos with lengths 6 times greater than the training horizon from OpenDV
validation set. The generations are 150 frames which is 15s long

(a) Moving two cars.

(b) Inserting a car on the left.

(c) Inserting a truck on the left.

Figure 16. Examples of moving and inserting objects with DINO control.

Figure 17. Visualizations of GEM’s multimodal generations showing paired depth and RGB frames from OpenDV validation set.

	Introduction
	Related Work
	Uncovering the Real GEM
	Preliminaries
	Controlling Ego-Vision Generation
	Ego-Motion Control
	Object-Level Control
	Human Pose Control

	Stable Long Video Generation
	Multimodal Generation
	Training Strategy

	Dataset Preparation
	Experiments
	Evaluation Metrics
	Comparisons of Generation Quality
	Human Evaluation
	Comparisons of Controllability

	Conclusion
	Frequently Asked Questions
	Method
	Pseudo-labeling
	Sampling Algorithm
	Time complexity

	Data Curation

	Implementation Details
	Training Stages
	Control Learning Stage
	High-Resolution Fine-Tuning

	Additional Evaluation
	Ablation Studies
	Qualitative Results

