Appendix
G. Ablation Study

To determine the optimal window size for MambaVi-
sion models, we study its impact on the performance of
MambaVision-T in different tasks such as image classifi-
cation, object detection and instance segmentation. Given
Q, K,V as the query, key and value tensors respectively,
self-attention is computed according to
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dp, represents the number of attention heads. If the input
size is larger than the window size, the attention is computed
in the local windows. Specifically, we study two different
architectures with window sizes of 7 and 14 in their stage
3 of the model. We also measure image throughput for the
task of image classification with a batch size of 128. As
presented in Table S.1, our analysis reveals that increasing
the window size to 14 offers a favorable trade-off between
performance and computational cost. While maintaining
nearly identical throughput (6298 img/s vs. 6318 img/s), the
larger window size achieves consistent improvements across
all vision benchmarks: ImageNet top-1 accuracy increases
to 82.3%, COCO mask AP improves to 41.8%. These gains,
though modest, come with minimal computational overhead
on modern hardware such as the NVIDIA A100 GPU. Based
on this empirical evidence, we selected 14 and 7 as our
default window sizes, as this combination provides better vi-
sion understanding capabilities while preserving the model’s
efficiency. The negligible 0.3% decrease in throughput is
well justified by the improved performance in various vision
tasks.

Attention(Q, K, V') = Softmax(

.o )

Model Window | Throughput | ImageNet COCO
Size (img/s) top-1 | APPx  Apmask

MambaVision-T 7,7 6318 82.2 464  41.7

MambaVision-T | 14,7 6298 82.3 464 418

Table S.1 — Ablation study on window size for MambaVision
model’s performance. Experiments on COCO dataset [19] are
performed using Mask-RCNN [13] head and x1 LR schedule.
Throughput is measured for image classification on a single
NVIDIA A100 GPU with batch size 128.

H. Architecture Details

In Table S.2, we present the comprehensive architectural
specifications of MambaVision variants. The backbone fol-
lows a hierarchical design with 4 stages, each employing
convolutional down-sampling operations that progressively
reduce spatial resolution by a factor of two. A key innova-
tion in our architecture appears in Stages 3 and 4, where

we introduce a hybrid design that synergistically combines
Mamba-based sequence modeling with self-attention mech-
anisms. This hybrid approach leverages Mamba’s efficient
sequence processing capabilities while benefiting from the
global context modeling strengths of self-attention layers.
Each variant (T, S, B, and L) maintains this fundamental
structure while scaling the channel dimensions and layer
counts to achieve different complexity-performance trade-
offs.

I. Training Details

Image classification experiments are conducted on the
ImageNet-1K dataset [4]. All models have been trained
for 300 epochs using 32 A100 GPUs, with LAMB opti-
mizer, batch size of 4096, and learning rate of 4e-3. The
self-attention formulation in stages 3 and 4 of all MambaV-
ision variants use a window size of 14 and 7, respectively.
To evaluate the performance of downstream tasks, we used
our pre-trained models as backbones for object detection,
instance segmentation, and semantic segmentation tasks us-
ing the MS COCO dataset [19] and ADE20K dataset [39],
respectively. For all downstream tasks, we used an AdamW
optimizer and batch size of 16. Specifically, for object de-
tection and instance segmentation, we used the Cascade
Mask-RCNN [13] head with hyperparameters such as x3 LR
schedule. For semantic segmentation, we used a UperNet
network [34] segmentation head.

J. Interpretability

To demonstrate the interpretability of MambaVision mod-
els, we visualize the attention patterns learned by our model
across diverse object categories. Figure S.1 presents a com-
prehensive analysis of attention mechanisms through paired
examples.

Our paired visualization analysis reveals several key in-
sights about MambaVision’s visual processing capabilities:
* Consistent Pattern Recognition: Each triplet (input-

heatmap-overlay) demonstrates how the model maintains
consistent attention patterns across different instances of
similar object categories.

* Contextual Understanding: The paired examples within
each row often represent contrasting scenarios (e.g., man-
made objects vs. natural subjects), showing the model’s
adaptability across domains.

* Fine-grained Detail: The attention heat maps precisely
highlight discriminative features, from the texture of ani-
mal fur to the structural elements of vehicles and contain-
ers.

* Robust Localization: Across all example pairs, the over-
laid visualizations demonstrate accurate object boundary
detection, regardless of the subject’s position or back-
ground complexity.



Figure S.1 — Visualization of MambaVision’s attention patterns. Each row contains two example cases, with each case showing a triplet
of: (left) original input image, (middle) attention heat map, and (right) attention overlay on the input image. The examples showcase
diverse scenarios: containers and spiders (row 1), aircraft and birds (row 2), marine life and snakes (row 3), groomed dogs and extreme
sports (row 4), poultry and snakes (row 5), and arachnids and outdoor activities (row 6). The attention maps reveal how MambaVision
effectively localizes key semantic regions and object boundaries across this wide range of categories.
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Table S.2 — Architecture configurations of MambaVision models. SA and MV refer to self-attention and MambaVision mixer blocks

respectively. BN denote Batch Normalization.



