
AFL: A Single-Round Analytic Approach for Federated Learning with Pre-trained
Models

Supplementary Material

A. Proof of Lemma 1
Proof. We prove this Lemma mainly based on the existing
MP inverse partition result [4] as follows.

In [4], it has been demonstrated that the MP inverse of
any matrix, A =

[
U V

]
can be written as

A† =
[
U V

]†
=

[
U † −U †V C† −U †V (I −C†C)KV ∗U †∗U †(I − V C†)

V † − V †UC̃† − V †U(I − C̃†C̃)K̃U∗V †∗V †(I −UC̃†)

]
,

(A.1)
where {

C = (I −UU †)V

C̃ = (I − V V †)U
,

{
K =

[
I + (I −C†C)V ∗U †∗U †V (I −C†C)

]−1

K̃ =
[
I + (I −C†C)U∗V †∗V †U(I −C†C)

]−1 .

(A.2)

In the case of X =

[
Xu

Xv

]
with only real numbers, we

substitute U with X⊤
u , V with X⊤

v . This rewrites (A.1),
(A.2) into

X† =

[
Xu

Xv

]†
=

[
X†⊤

u −X†⊤
u X⊤

v C†

X†⊤
v −X†⊤

v X⊤
u C̃†

]⊤
−

[
X†⊤

u X⊤
v (I −C†C)KXvX

†
uX

†⊤
u (I −X⊤

v C†)

X†⊤
v X⊤

u (I − C̃†C̃)K̃XuX
†
vX

†⊤
v (I −X⊤

u C̃†)

]⊤
,

(A.3)
where {

C = (I −X⊤
u X†⊤

u )X⊤
v

C̃ = (I −X⊤
v X†⊤

v )X⊤
u

,

{
K =

[
I + (I −C†C)XvX

†
uX

†⊤
u X⊤

v (I −C†C)
]−1

K̃ =
[
I + (I −C†C)XuX

†
vX

†⊤
v X⊤

u (I −C†C)
]−1 .

(A.4)
As Xu and Xv are of full column ranks, we obtain an

alternative formulation of the MP inverse, i.e.,

X†
u = (X⊤

u Xu)
−1X⊤

u , X†
v = (X⊤

v Xv)
−1X⊤

v .
(A.5)

Hence we have

C = (I −X⊤
u X†⊤

u )X⊤
v

= (I −X⊤
u Xu(X

⊤
u Xu)

−1)X⊤
v = 0. (A.6)

Similarly,

C̃ = (I −X⊤
v X†⊤

v )X⊤
u

= (I −X⊤
v Xv(X

⊤
v Xv)

−1)X⊤
u = 0. (A.7)

This simplifies K and K̃ as{
K = (I +XvX

†
uX

†⊤
u X⊤

v )−1

K̃ = (I +XuX
†
vX

†⊤
v X⊤

u )−1
. (A.8)

According to the Woodbury Matrix Identity, i.e., for con-
formable matrices A ∈ Rn×n, B ∈ Rn×m, E ∈ Rm×m,
and D ∈ Rm×n,

(A+BED)−1 = A−1 −A−1B(E−1 +DA−1B)−1DA−1,

(A.9)
we expand K by substituting A = I , B = Xv, E =
X†

uX
†⊤
u , and D = X⊤

v , leading to

K = I −Xv(X
⊤
u Xu +X⊤

v Xv)
−1X⊤

v . (A.10)

Similarly,

K̃ = I −Xu(X
⊤
u Xu +X⊤

v Xv)
−1X⊤

u . (A.11)

Thus,

X† =

[
X†⊤

u −X†⊤
u X⊤

v KXvX
†
uX

†⊤
u

X†⊤
v −X†⊤

v X⊤
u K̃XuX

†
vX

†⊤
v

]⊤
. (A.12)

Let X† =
[
Ū V̄

]
, we have

Ū =
(
X†⊤

u −X†⊤
u X⊤

v KXvX
†
uX

†⊤
u

)⊤
= X†

u −X†
uX

†⊤
u X⊤

v K⊤XvX
†
u

V̄ =
(
X†⊤

v −X†⊤
v X⊤

u K̃XuX
†
vX

†⊤
v

)⊤

= X†
v −X†

vX
†⊤
v X⊤

u K̃⊤XuX
†
v (A.13)

Substitute K and K̃ with (A.10) and (A.11), we may rewrite
(A.13) into

Ū = X†
u −X†

uX
†⊤
u X⊤

v

(
I −Xv(X

⊤
u Xu +X⊤

v Xv)
−1X⊤

v

)⊤
XvXu,

V̄ = X†
v −X†

vX
†⊤
v X⊤

u

(
I −Xu(X

⊤
u Xu +X⊤

v Xv)
−1X⊤

u

)⊤
XuX

†
v.

(A.14)
That is,

Ū =X†
u −X†

uX
†⊤
u X⊤

v XvX
†
u

−X†
uX

†⊤
u X⊤

v Xv(X
⊤
u Xu +X⊤

v Xv)
−1X⊤

v XvX
†
u

V̄ =X†
v −X†

vX
†⊤
v X⊤

u XuX
†
v

−X†
vX

†⊤
v X⊤

u Xu(X
⊤
u Xu +X⊤

v Xv)
−1X⊤

u XuX
†
v .

(A.15)



Let {
Cu = X⊤

u Xu

Cv = X⊤
v Xv

, and

{
Ru = R−1

u

Rv = R−1
v

. (A.16)

we have{
Ū =

[
I −RuCv −RuCv(Cu +Cv)

−1Cv

]
X†

u

V̄ =
[
I −RvCu −RvCu(Cu +Cv)

−1Cu

]
X†

v

.

(A.17)
Thus,

X† =

[
Xu

Xv

]†
=

[
Ū V̄

]
, (A.18)

which completes the proof.

B. Proof of Theorem 1
Proof. As indicated in Lemma 1, we have

X† =
[
Ū V̄

]
(A.19)

where{
Ū =

[
I −RuCv −RuCv(Cu +Cv)

−1Cv

]
X†

u

V̄ =
[
I −RvCu −RvCu(Cu +Cv)

−1Cu

]
X†

v

,

(A.20)
and {

Ru = (X⊤
u Xu)

−1 = X†
uX

†⊤
u

Rv = (X⊤
v Xv)

−1 = X†
vX

†⊤
v{

Cu = R−1
u = X⊤

u Xu

Cv = R−1
v = X⊤

v Xv

. (A.21)

Hence,

W = X†Y =
[
Ū V̄

] [Yu

Yv

]
= ŪYu + V̄ Yv. (A.22)

By substituting Ū and V̄ with those in (A.20), we rewrite
(A.22) into

Ŵ =
[
I −RuCv −RuCv(Cu +Cv)

−1Cv

]
X†

uYu

+
[
I −RvCu −RvCu(Cu +Cv)

−1Cu

]
X†

vYv.
(A.23)

As Ŵu = X†
uYu and Ŵv = X†

vYv , (A.23) can be rewritten
as

Ŵ =
[
I −RuCv −RuCv(Cu +Cv)

−1Cv

]
Ŵu

+
[
I −RvCu −RvCu(Cu +Cv)

−1Cu

]
Ŵv.
(A.24)

That is,

Ŵ = WuŴu +WvŴv, (A.25)

where{
Wu = I −RuCv −RuCv(Cu +Cv)

−1Cv

Wv = I −RvCu −RvCu(Cu +Cv)
−1Cu

,

{
Cu = X⊤

u Xu

Cv = X⊤
v Xv

and

{
Ru = C−1

u

Rv = C−1
v

. (A.26)

C. Proof of Theorem 2
Proof. First we consider the aggregation of two clients. Di-
rectly substituting Ŵu as Ŵ r

u and changing Cu, Cv to
Cr

u = (X⊤
u Xu + γI), Cr

v = (X⊤
v Xv + γI) in Theorem

B, we have

Ŵ r = W r
uŴ

r
u +W r

vŴ
r
v, (A.27)

where{
W r

u = I −Rr
uC

r
v −Rr

uC
r
v(C

r
u +Cr

v)
−1Cr

v

W r
v = I −Rr

vC
r
u −Rr

vC
r
u(C

r
u +Cr

v)
−1Cr

u

,

{
Cr

u = (X⊤
u Xu + γI)

Cr
v = (X⊤

v Xv + γI)
and

{
Rr

u = Cr−1
u

Rr
v = Cr−1

v

. (A.28)

Since Ŵ r
u = (X⊤

u Xu + γI)−1X⊤
u Yu, then

W r
uŴ

r
u = [I −Rr

uC
r
v −Rr

uC
r
v(C

r
u +Cr

v)
−1Cr

v]R
r
uX

⊤
u Yu

= [Rr
u −Rr

uC
r
vR

r
u −Rr

uC
r
v(C

r
u +Cr

v)
−1Cr

vR
r
u]X

⊤
u Yu.

(A.29)
According to the Woodbury Matrix Identity in (A.9), let

B = I,D = I , we have

(A+E)−1 = A−1−A−1(A−1 +E−1)−1A−1. (A.30)

Then we have

A−1(A−1 +E−1)−1A−1 = A−1− (A+E)−1. (A.31)

Swapping A−1 with Cr
v and E−1 with Cr

u, we have

Cr
v(C

r
v +Cr

u)
−1Cr

v = Cr
v − (Rr

u +Rr
v)

−1. (A.32)

Similarly,

Rr
u(R

r
u +Rr

v)
−1Rr

r = Rr
u − (Cr

u +Cr
v)

−1. (A.33)

By substituting (A.32) into (A.29),

W r
uŴ

r
u = [Rr

u −Rr
uC

r
vR

r
u +Rr

uC
r
vR

r
u −Rr

u(R
r
u +Rr

v)
−1Rr

u]X
⊤
u Yu.

(A.34)



Then

W r
uŴ

r
u = [Rr

u −Rr
u(R

r
u +Rr

v)
−1Rr

u]X
⊤
u Yu. (A.35)

Further substituting (A.33) into (A.35), we have

W r
uŴ

r
u = [Rr

u −Rr
u(R

r
u +Rr

v)
−1Rr

u]X
⊤
u Yu

= [Rr
u −Rr

u + (Cr
u +Cr

v)
−1]X⊤

u Yu

= (Cr
u +Cr

v)
−1X⊤

u Yu

= (Cu +Cv + 2γI)−1X⊤
u Yu. (A.36)

Similarly,

W r
vŴ

r
v = (Cu +Cv + 2γI)−1X⊤

v Yv. (A.37)

Thus equation (A.27) can be converted to

Ŵ r = (Cu +Cv + 2γI)−1(X⊤
u Yu +X⊤

v Yv). (A.38)

Since Ŵ = X†Y and X =

[
Xu

Xv

]
, Y =

[
Yu

Yv

]
, with

full-column rank of X ,

Ŵ = X†Y = (XTX)−1XTY (A.39)

= (
[
XT

u XT
v

] [Xu

Xv

]
)−1

[
XT

u XT
v

] [Yu

Yv

]
)

= (X⊤
u Xu +X⊤

v Xv)
−1(X⊤

u Yu +X⊤
v Yv)

= (Cu +Cv)
−1(X⊤

u Yu +X⊤
v Yv).

By comparing with (A.27) and (A.39), we can obtain the
relation between Ŵ and Ŵ r as follows.

Ŵ r = (Cr
u +Cr

v)
−1(Cu +Cv)Ŵ . (A.40)

By extending to the multi-client scenario, we have

Ŵ r
agg,k = (Cr

agg,k)
−1Cagg,kŴagg,k, (A.41)

where

Cr
agg,k = Cagg,k + kγI =

k∑
i

Cr
i,

Cr
i = X⊤

i Xi + γI, (A.42)

which complete the proof.

D. Validating AA Laws on Dummy Dataset
Here we validate the AA laws in AFL, whether the aggre-
gated weight Ŵagg,K equals to Ŵ trained on a central-
ized dataset. This is done by measuring the deviation (i.e.,
∆W = ∥Ŵ − Ŵagg,K∥1) between the joint-trained weight
and the aggregated one on a dummy dataset.

Dummy Dataset. We randomly generate a 512-
dimension and 10,000-sample dummy dataset. This dataset

has 10 classes, with each class containing an identical
number of samples. The samples in the dummy dataset
are randomly but evenly distributed to K clients (we set
K = 2, 10, 20, 50, 100, 200).

Results. As indicated in Table A.1, without the RI process,
the deviation is negligible forK = 2, 10, but it grows with an
increasing K and could become unacceptable (e.g., 3.67×
1012 for K = 200). This is because the full-column rank
assumption might not hold anymore for large K. By adopting
the RI process, the deviations become negligible (around
10−10) for various K values as shown in the second row of
Table A.1. The RI process introduces γ (we adopt γ = 1 in
this case, but any value would suffice) to satisfy full-column
rank condition, which is later removed in (16) to restore the
AA law’s optimality. This experiment has well demonstrated
AFL’s invariance to data partitioning with empirical evidence.
The codes for the dummy data validation can be found in the
file App Dummy.ipynb in the released code.

E. Implementation Details of Experiments

For the compared methods, we set the local epoch to 1 and
all the clients are selected to participate each round after
local training. The batch size is set to 64 and we employ
SGD optimizer with learning rate of 0.05. The number of
global communication rounds is set to be 500 since there is
little or no performance gain with more rounds. We report
the average and standard deviation of best top-1 accuracy in
three runs. All the experiments are conducted on a NVIDIA
GeForce RTX 4090 GPU. All the compared methods except
FedDisco are implemented with PFLlib [45] and FedDisco
is implemented upon FedAvg via official codes.

For the specified hyperparameters in compared methods,
we tune the parameters via grid search. For FedProx [18], we
tune the hyperparameter µ from {0.0001, 0.001, 0.01, 0.1}.
For MOON [16], we tune the hyperparameter µ from
{0.1, 1, 5, 10}. For FedDyn [1], we tune the hyperparam-
eter α from {0.001, 0.01, 0.1, 1.0}. For FedNTD [15], we
tune the hyperparameters τ from {0.1, 0.5, 1.0} and β
from {0.1, 0.5, 1.0, 2.0}. For FedDisco [43], we tune the
hyperparameters a from {0.01, 0.05, 0.1, 0.5} and b from
{0.005, 0.01, 0.05, 0.1}. The best parameters we adopted
are, µ = 0.001 in FedProx [18], µ = 1 in MOON [16],
α = 1.0 in FedDyn [1], τ = 0.5, β = 1.0 in FedNTD [15]
and a = 0.05, b = 0.01 in FedDisco [43].

F. Necessity of FL with Pre-trained Model

To validate the necessity of FL with pre-trained backbone,
we train the models locally without aggregation under the
setting of α=0.1, K=100. We report the average and maxi-
mum test accuracy of local training among all the clients. As
shown in Table. A.2, without aggregation, the results of local
training (12.04% and 16.36%) fall behind FedAvg (56.57%)



Table A.1. Deviation ∆W between the joint-trained weight and the aggregated one (average of 5 runs).

Difference K = 2 K = 10 K = 20 K = 50 K = 100 K = 200
∆W (w/o RI) 7.83× 10−14 1.76× 10−12 9.86× 10−1 5.90 5.93× 104 3.67× 1012

∆W (w/ RI) 4.94× 10−14 1.74× 10−12 5.09× 10−10 8.45× 10−10 7.57× 10−10 7.81× 10−10

and AFL (58.56%) with large gaps. Training local models
without FL could suffer from the data heterogeneity and the
collaboration among clients is beneficial. This pattern is also
validated in previous studies with pre-trained backbone [7].

Table A.2. Comparison between FL teniques including FedAvg and
AFL with local training when utilizing pre-trained backbone.

Methods Local Max Local Avg FedAvg AFL
Acc.(%) 16.36 12.04 56.57 58.56

G. Comparative Study with Single-Round FL
In this section, we provide a comparative study with another
single-round FL technique FedFisher [11] to further validate
our proposed AFL. We compare AFL with FedFisher under
the setting of α = 0.1,K = 50 (larger K will lead to out-
of-memory in FedFisher) with the same pre-trained ResNet-
18 provided by the repository of FedFisher. As shown in
Table A.3, AFL outperforms FedFisher with considerable
distance (35.87% v.s. 19.31%). FedFisher utilizes iterative
gradient-descent to aggregate local weights and MSE loss is
established by the difference of global and local weights to
preventing drifting between them during aggregation. How-
ever, this technique could still suffer from the data hetero-
geneity, while AFL formulates the AA law to achieve the
invariance to data partitioning, enabling outperforming result
when compared with FedFisher.

Table A.3. Comparative study between AFL and FedFisher.

Methods FedFisher AFL
Acc.(%) 19.31 35.87


