
CL-LoRA: Continual Low-Rank Adaptation for Rehearsal-Free

Class-Incremental Learning

Supplementary Material

7. Extended Illustration of Methodology

7.1. Overview of Training Algorithm

Algorithm 1 presents the training process of our CL-LoRA
for class-incremental learning. Given a sequence of tasks
{Tt}Tt=1, our method learns each task sequentially while
leveraging both task-shared and task-specific adapters. For
the first task (t = 1), we initialize the shared adapter with
a fixed random orthogonal down-projection matrix Bs and
zero-initialized up-projection matrix As following Eq. 6.
For each subsequent task, we copy the shared adapter from
the previous task (At

s At�1
s) and initialize new compo-

nents including: (1) task-specific adapters At,Bt where At

is initialized as zero and Bt follows Gaussian initialization
as in [20], and (2) block weights Ut where each scaling fac-
tor µt is randomly initialized from the uniform distribution
U(0, 2) to allow flexible modulation of task-specific adap-
tation. We also initialize a temporary local FC classifier ht

�
for the current task’s classes, which will be discarded af-
ter training as we transition to prototype-based inference.
During the forward pass, we employ our dual-adapter ar-
chitecture where shared adapters are applied to the first l
blocks and task-specific adapters to the remaining blocks.
The model is trained with three objectives: (1) a local cross-
entropy loss Lce for current task classification, (2) an early
exit knowledge distillation loss Lkd at the transition point
l to preserve cross-task knowledge when t > 1, and (3) an
orthogonality loss Lorth between block weights to prevent
interference. Notably, we introduce gradient reassignment
based on the L2 norm of previous shared adapter weights
to effectively maintain essential knowledge during class-
incremental learning. After training each task, we discard
its task-specific classifier ht

� and compute class prototypes
that will be used during inference.

7.2. Use of Random Orthogonal Matrix

Motivation: Our use of random orthogonal matrices in
the shared adapter’s down-projection is motivated by recent
theoretical findings in [61], which demonstrates that fine-
tuning the up-projection matrix is inherently more effec-
tive than tuning the down-projection matrix in LoRA. This
asymmetric property suggests that a fixed down-projection
matrix can maintain comparable performance to a fully
trainable one while providing additional stability benefits
for class-incremental learning. Indeed, our empirical results
in Section 5.3 validate this insight where using untrained
random orthogonal matrices for down-projection achieves

Algorithm 1 Class-Incremental Learning with CL-LoRA
Require:

1: Backbone f✓

2: Task sequence {Tt}Tt=1

3: Position of shared adapter l
4: for t 1 to T do

5: if t = 1 then . initial task
6: Bs Random Orthogonal, A0

s 0 . Eq. 6
7: else

8: At
s At�1

s . Copy weights
9: end if

10: Initialize {At,Bt,Ut, h
t
�}

11: for (x, y) 2 Tt do

12: z
0
t x

13: for i 1 to N do

14: if i l then

15: z
i
t f

i
✓(z

i�1
t) +Ai

sB
i
sz

i�1
t . Eq. 8

16: else

17: z
i
t f

i
✓(z

i�1
t) + µ

i
tA

i
tB

i
tz

i�1
t . Eq. 11

18: end if

19: end for

20: Lce Lce(ht
�(z

N
t [CLS]), y) . Eq. 2

21: if t > 1 then

22: z
l
t�1 f

t�1
1:l (x) . Early exit

23: Lkd z
l
t[CLS], zlt�1[CLS] . Eq. 9

24: Lorth kU>
t U1:t�1k2 . Eq. 12

25: kat�1
s k2 L2(At�1

s)
26: end if

27: L Lce + �1Lkd + �2Lorth

28: rAt
s
L⇤
kd rAt

s
Lkd � �(kat�1

s k2) . Eq. 10
29: Update parameters via gradient descent
30: end for

31: Freeze and store (At,Bt) and Ut

32: Discard h
t
�

33: end for

better performance than regular trainable down-projection
matrices. This suggests that fixing the low-dimensional pro-
jection space with the orthogonal structure provides a more
stable foundation for cross-task knowledge accumulation in
class-incremental learning.
Random Orthogonal v.s. Random: While a simple ran-
dom matrix could serve as the fixed down-projection, we
specifically choose orthogonal matrices because they pre-
serve the geometric structure of the input space in the pro-
jected low-dimensional representation. Since BsB>

s =

I, orthogonal matrices maintain distances and angles be-
tween vectors during projection, ensuring that similar input
patterns remain distinguishable in the lower-dimensional
space. This property is essential for stable knowledge ac-
cumulation across tasks, as it prevents information collapse
and maintains the discriminative power of learned features.
Table 4 demonstrates the crucial importance of using ran-
dom orthogonal matrices rather than standard random ma-
trices for down-projection Bs in our task-shared adapter.

CIFAR-100 ImageNet-R
Down-Projection AT A AT A

Random Bs 8.99 20.66 0.77 2.39
Random Orthogonal Bs 85.96 91.85 78.85 84.77

Table 4. Comparison between random matrices and random or-
thogonal matrices for down-projection Bs on CIFAR-100 (T =
10) and ImageNet-R (T = 20). Results show last step accuracy
AT and average accuracy A (%).

In this work, as described in Section 4.1, we use SVD
decomposition to generate the random orthogonal matrix
Bs by first generating a random matrix M ⇠ N (0, 1) fol-
lowed by M = U⌃V> and setting Bs = UV>. However,
there are other efficient alternatives such as QR decomposi-
tion which could potentially offer better computational ef-
ficiency and numerical stability for generating random or-
thogonal matrices.
The Position of Shared Adapter: In this work, we insert
the task-shared adapters in the first l blocks while insert-
ing task-specific adapters in the last N � l blocks. This
design aligns with the hierarchical nature of vision trans-
formers [37], where earlier layers tend to capture more gen-
eral, transferable features while deeper layers specialize in
task-specific representations. We further validate this de-
sign choice through ablation experiments where we flip the
position of task-specific and task-shared adapters (i.e., in-
serting the task-specific adapters in the first l blocks while
using task-shared adapters in the last N � l blocks).

As shown in Figure 5, the original configuration (Ours,
with task-shared adapter in the first l blocks) consistently
outperforms the flipped version (Flip, with task-specific
adapter in the first l blocks) across different transition points
l. Taking l = 6 as an example, our method achieves sig-
nificantly better performance than the flipped version on
ImageNet-R (79.16% v.s. 65.38%). The performance gap
becomes even more obvious with smaller l values, where
the flipped version shows substantial degradation (down to
58.02% when l = 2). This dramatic difference validates
that earlier layers are more suitable for shared knowledge
accumulation while later layers are better suited for task-
specific adaptation. These findings align with recent stud-
ies on transformer feature hierarchies and demonstrate that

Figure 5. Performance comparison between ours design (task-
shared adapters in first l blocks) and flipped configuration (task-
specific adapters in first l blocks) with varying transition point
l 2 {2, 4, 6, 8, 10}. Results show final step accuracy AT on
ImageNet-R with T = 20 tasks.

respecting the natural progression from general to specific
processing in vision transformers is crucial for effective
class-incremental learning.
Difference with Existing Work: It is also important to note
that our use of orthogonal matrices differs fundamentally
from existing works like [26, 47], which employ orthog-
onality constraints between task-specific adapters to mini-
mize interference, relying solely on task-specific LoRA. In
contrast, our approach leverages random orthogonal matri-
ces in the task-shared adapter to establish a fixed subspace
for knowledge sharing across tasks. Specifically, by us-
ing fixed orthogonal down-projection Bs, we ensure that
BsB>

s = I, which creates a stable foundation for the train-
able up-projection matrix As to accumulate shared knowl-
edge while maintaining consistency in the low-dimensional
space. This stability is particularly crucial for our dual-
adapter architecture, as it allows the shared component to
effectively preserve and transfer knowledge across tasks
while the task-specific adapters handle unique characteris-
tics through their own adaptation.

7.3. Detailed Experimental Setup

All experiments were conducted on NVIDIA A40 GPUs us-
ing PyTorch. For comprehensive evaluation and fair com-
parison, we run each experiment 10 times with randomly
generated seeds. The experiments code implementations
is based on the LAMDA-PILOT [43, 57, 59]2 and Mam-
moth [2, 3]3. For existing methods that are not included
in these two public codebases, we use their original official
implementations with their reported best hyper-parameters.
Importantly, all results reported in our paper are from our
own reproduction using the same set of 10 random seeds

2https://github.com/sun-hailong/LAMDA-PILOT
3https://github.com/aimagelab/mammoth

https://github.com/sun-hailong/LAMDA-PILOT
https://github.com/aimagelab/mammoth

rather than directly quoting numbers from original papers,
ensuring a fair and consistent comparison across all meth-
ods. This reproduction effort helps eliminate potential vari-
ations due to different random seeds, hardware configura-
tions, or implementation details that might exist in origi-
nally reported results.

	Introduction
	Related Work
	Class-Incremental Learning
	Parameter-Efficient Fine-Tuning

	Preliminaries
	CIL with Pre-trained Models
	Low-Rank Adaptation

	Method
	Dual-Adapter Architecture
	Learning Cross-Task Knowledge
	Learning Task-Specific Knowledge
	Integrated Objectives

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study
	Discussions

	Conclusion
	Extended Illustration of Methodology
	Overview of Training Algorithm
	Use of Random Orthogonal Matrix
	Detailed Experimental Setup

