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mental results, implementation details, and analysis to sup-
port our main paper. The contents are organized as follows:
• Additional Description for Methods: Detailed moti-

vations and derivations for our proposed approach, in-
cluding diffusion features for DG detection, two-level
guidance framework, feature alignment, and object-level
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• Class-wise Results Analysis: Detailed per-category
performance analysis on Real to Artistic and Diverse
Weather benchmarks (in Sec. C).

• Additional Results of Different SD Versions: Compre-
hensive comparison and analysis of different Stable Dif-
fusion versions (SD-1.5, SD-2.1, SD-3-M) across various
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• Additional Analysis for Results: In-depth analysis of
domain distribution differences and confusion matrix pat-
terns to validate our method’s effectiveness (in Sec. E).

• Visualization of Detection Results: Qualitative results
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different domain generalization scenarios (in Sec. F).
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B. Additional Description for Methods

B.1. Motivations

Diffusion features for DG detection. Domain generaliza-
tion for object detection requires learning domain-invariant
representations without accessing target domain data, which
remains challenging due to complex real-world variations.
While existing detectors struggle under domain shifts [36],
diffusion models have demonstrated unique advantages in
handling diverse variations through their progressive de-
noising process. These models naturally distinguish intrin-
sic semantic structures from domain-specific variations [21,
28], building robustness against various perturbations. We
leverage these properties for domain-generalized detection:
the denoising mechanism filters out domain-specific varia-
tions while preserving essential object characteristics [11],
and the multi-scale features provide robust semantic repre-
sentations that generalize across domains.
Two-level guidance from frozen diffusion detector.
While directly using diffusion features provides strong gen-
eralization capability, it incurs substantial computational
overhead. This motivates us to transfer the generalization
ability from a frozen diffusion detector to lightweight de-
tectors. We propose a two-level guidance framework to
capture both semantic understanding and detection knowl-
edge. At the feature level, we align global feature distribu-
tions between diffusion and conventional detectors to learn
domain-invariant representations. At the object level, we fa-
cilitate task-specific knowledge transfer through shared de-
tection heads following [30], enabling precise localization
and classification learning from the diffusion teacher.
Feature alignment for heterogeneous detectors. Direct
feature alignment with MSE leads to suboptimal results
due to different magnitude distributions and feature dom-
inance issues [2]. We leverage Pearson Correlation Coef-
ficient (PCC) for feature alignment, which captures rela-
tional patterns while being invariant to magnitude differ-
ences. By normalizing features before alignment, PCC ef-
fectively handles discrepancies between diffusion and con-
ventional detectors, enabling stable knowledge transfer be-
tween heterogeneous detector pairs.
Object-level alignment for task-specific knowledge
transfer. While feature-level alignment helps learn
domain-invariant representations, detection-specific knowl-
edge transfer remains challenging due to architectural dif-
ferences. We propose an object-level alignment scheme that
shares detection heads between student and teacher [30],



providing task-oriented supervision through classification
and regression branches. This complementary guidance
enables effective knowledge transfer from the diffusion
teacher to conventional detectors.

B.2. Detailed Derivations and Analysis
Relationship between KL divergence, MSE and PCC:
Let Ml

comm and Ml
diff denote the l-th layer feature maps

from student and teacher networks respectively. After stan-
dardization, we obtain their normalized versions M̂l

comm

and M̂l
diff with zero mean and unit variance:

E[M̂l
comm] = E[M̂l

diff] = 0,

Var[M̂l
comm] = Var[M̂l

diff] = 1
(1)

According to [2], when using KL divergence with
temperature scaling for feature distillation, in the high-
temperature limit (T →∞), the gradient of KL divergence
between normalized features can be approximated as:

∂LKL

∂M̂l
comm

≈ 1

Nl
(M̂l

comm − M̂l
diff) (2)

This is proportional to the gradient of MSE loss. For
standardized features, their Pearson correlation coefficient
(PCC) simplifies to their covariance:
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Var[M̂l
comm]Var[M̂l

diff]

= E[M̂l
commM̂l

diff]

(3)

The feature alignment loss can be expressed in terms of
PCC:
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L∑
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= 2
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Therefore, assuming positive correlation (−1 < rl < 1),
we have established the following equivalence chain:

minLKL(P
l
comm‖P l

diff)⇔ max rl

⇔ min ‖M̂l
comm − M̂l

diff‖22
(5)

This equivalence chain demonstrates that through stan-
dardization, minimizing KL divergence, maximizing PCC,
and minimizing MSE become equivalent objectives, provid-
ing both computational simplicity and theoretical guaran-
tees for feature alignment.
Details of Classification Knowledge Transfer: To effec-
tively transfer classification knowledge between diffusion
and common detectors, we employ knowledge distillation
with temperature scaling. Given the logits zidiff, z

i
comm ∈

RC+1 from both feature sources for the i-th proposal, where
C is the number of object categories, we first convert them
to probability distributions.

The temperature-scaled softmax converts logits to prob-
abilities as:

Pi
cat = softmax(zidiff/τ), Qi

cat = softmax(zicomm/τ) (6)

where Pi
cat,Q

i
cat ∈ RC+1 represent the predicted probabil-

ity distributions over all classes including background, and
τ is the temperature parameter that produces softer distribu-
tions.

The knowledge distillation loss is computed using KL
divergence between these distributions:

Lcls =
1

N

N∑
i=1

τ2DKL(Q
i
cat‖Pi

cat) (7)

where N is the total number of proposals and:

DKL(Q
i
cat‖Pi

cat) =
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c=1

Qi
c log

Qi
c

P i
c

(8)

with Qi
c and P i

c denoting the predicted probabilities for
class c.



C. Classwise Results
Results on Real to Artistic: As shown in Tab. 4, 1, and
2, our diffusion detector demonstrates remarkable general-
ization capability on artistic-style datasets, surpassing both
DG and DA methods significantly. On Clipart, our diffusion
detector achieves 58.3% mAP, leading to substantial im-
provements of 9.0% and 19.4% over the previous best DA
method AT [18] and DG method DivAlign [8], respectively.
On Comic dataset, our method reaches 51.9% mAP, ex-
hibiting clear advantages compared to the best DA approach
D-ADAPT [13] at 40.5% and DG method DivAlign [8] at
33.2%. For Watercolor, we achieve 68.4% mAP, which sig-
nificantly surpasses the previous best results of 59.9% from
AT [18] and 57.4% from DivAlign [8].

However, the diffusion-guided detector shows limited
success in bridging extreme domain gaps. On Cli-
part, Comic, and Watercolor, the diffusion-guided detec-
tor (40.8%, 29.7%, and 54.2% respectively) underperforms
compared to both recent DG methods (DivAlign: 38.9%,
33.2%, and 57.4%) and DA approaches (AT and D-ADAPT:
49.3%, 40.5%, and 59.9%). While the improvements over
baseline remain notable (+13.6%, +11.6%, and +12.7% re-
spectively), the performance gap suggests that transferring
the strong generalization capability from diffusion models
to conventional detectors remains challenging when facing
significant stylistic variations, likely due to the extreme do-
main shifts in artistic styles that make feature alignment par-
ticularly difficult.
Results on Diverse Weather benchmark: As shown in
Tab. 3, our method demonstrates strong robustness across
various weather and lighting conditions. For Daytime-
Foggy scenarios, our diffusion guided detector achieves
44.7% mAP, exceeding the previous best result from
UFR [20] by 5.1%. In Night-Sunny conditions, we ob-
tain 49.1% mAP, surpassing G-NAS [33] which achieves
45.0%. The improvement becomes more pronounced in
challenging Night-Rainy scenarios, where our diffusion de-
tector reaches 27.8% mAP, considerably outperforming the
previous best of 24.1% from DivAlign [8]. Under Dusk-
Rainy conditions, we achieve 42.5% mAP, marking a clear
advancement over DivAlign [8] at 38.1%. Most notably, the
diffusion-guided detector demonstrates consistent improve-
ments over the baseline across all four scenarios, with re-
markable margins of +15.9%, +17.7%, +9.3%, and +13.3%.
These comprehensive results not only validate the effec-
tiveness of our knowledge transfer framework in handling
natural environmental variations but also confirm our ap-
proach’s strong capability in enhancing detection general-
ization across diverse real-world conditions.

Table 1. Real to Artistic DG and DA Results (%) on Comic (Class-
wise).

Methods Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [8] (CVPR’24) 41.7 12.3 29.0 13.2 20.6 36.5 25.5
DivAlign [8] (CVPR’24) 54.1 16.9 30.1 25.0 27.4 45.9 33.2

DA methods (with unlabeled target data)
DA-Faster [5] (CVPR’18) 31.1 10.3 15.5 12.4 19.3 39.0 21.2
SWDA [27] (CVPR’19) 36.4 21.8 29.8 15.1 23.5 49.6 29.4
STABR [14] (ICCV’19) 50.6 13.6 31.0 7.5 16.4 41.4 26.8
MCRA [35] (ECCV’20) 47.9 20.5 37.4 20.6 24.5 50.2 33.5
I3Net [4] (CVPR’21) 47.5 19.9 33.2 11.4 19.4 49.1 30.1
DBGL [3] (ICCV’21) 35.6 20.3 33.9 16.4 26.6 45.3 29.7
D-ADAPT [13] (ICLR’22) 52.4 25.4 42.3 43.7 25.7 53.5 40.5

Ours (DG settings)
Diff. Detector (SD-1.5) 63.3 41.7 58.2 31.8 40.9 75.3 51.9
Diff. Detector (SD-2.1) 61.1 35.7 53.6 23.2 35.0 71.2 46.6
Diff. Guided (SD-1.5) 47.6 21.0 35.3 9.1 21.6 43.5 29.7+11.6

Diff. Guided (SD-2.1) 46.4 13.2 24.2 7.5 12.3 35.8 24.9+6.8

Table 2. Real to Artistic DG and DA Results (%) on Watercolor
(Classwise).

Methods Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [8] (CVPR’24) 87.1 51.7 53.6 35.1 23.6 63.6 52.5
DivAlign [8] (CVPR’24) 90.4 51.8 51.9 43.9 35.9 70.2 57.4

DA methods (with unlabeled target data)
SWDA [27] (CVPR’19) 82.3 55.9 46.5 32.7 35.5 66.7 53.3
MCRA [35] (ECCV’20) 87.9 52.1 51.8 41.6 33.8 68.8 56.0
UMT [9] (CVPR’21) 88.2 55.3 51.7 39.8 43.6 69.9 58.1
IIOD [32] (TPAMI’21) 95.8 54.3 48.3 42.4 35.1 65.8 56.9
I3Net [4] (CVPR’21) 81.1 49.3 46.2 35.0 31.9 65.7 51.5
SADA [6] (IJCV’21) 82.9 54.6 52.3 40.5 37.7 68.2 56.0
CDG [16] (CVPR’19) 97.7 53.1 52.1 47.3 38.7 68.9 59.7
VDD [27] (AAAI’21) 90.0 56.6 49.2 39.5 38.8 65.3 56.6
DBGL [3] (ICCV’21) 83.1 49.3 50.6 39.8 38.7 61.3 53.8
AT [18] (CVPR’22) 93.6 56.1 58.9 37.3 39.6 73.8 59.9
LODS [17] (CVPR’22) 95.2 53.1 46.9 37.2 47.6 69.3 58.2

Ours (DG settings)
Diff. Detector (SD-1.5) 99.8 70.3 57.5 49.8 51.0 82.0 68.4
Diff. Detector (SD-2.1) 91.1 65.9 55.7 47.6 39.1 73.4 62.1
Diff. Guided (SD-1.5) 90.1 51.0 48.5 40.2 28.9 66.7 54.2+12.7

Diff. Guided (SD-2.1) 99.6 48.4 49.1 28.4 23.4 54.2 50.6+9.1



Table 3. Generalization detection Results (%) on Diverse Weather benchmark (Classwise).

Daytime-Foggy Night-Sunny
Methods Bus Bike Car Motor Person Rider Truck mAP Bus Bike Car Motor Person Rider Truck mAP

IBN-Net [23] (CVPR’18) 29.9 26.1 44.5 24.4 26.2 33.5 22.4 29.6 37.8 27.3 49.6 15.1 29.2 27.1 38.9 32.1
SW [24] (ICCV’19) 30.6 26.2 44.6 25.1 30.7 34.6 23.6 30.8 38.7 29.2 49.8 16.6 31.5 28.0 40.2 33.4
IterNorm [12] (CVPR’19) 29.7 21.8 42.4 24.4 26.0 33.3 21.6 28.5 38.5 23.5 38.9 15.8 26.6 25.9 38.1 29.6
ISW [7] (CVPR’21) 29.5 26.4 49.2 27.9 30.7 34.8 24.0 31.8 38.5 28.5 49.6 15.4 31.9 27.5 41.3 33.2
CDSD [31] (CVPR’22) 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6
CLIPGap [29] (CVPR’23) 36.1 34.3 58.0 33.1 39.0 43.9 25.1 38.5 37.7 34.3 58.0 19.2 37.6 28.5 42.9 36.9
SRCD [25] (TNNLS’24) 36.4 30.1 52.4 31.3 33.4 40.1 27.7 35.9 43.1 32.5 52.3 20.1 34.8 31.5 42.9 36.7
G-NAS [33] (AAAI’24) 32.4 31.2 57.7 31.9 38.6 38.5 24.5 36.4 46.9 40.5 67.5 26.5 50.7 35.4 47.8 45.0
OA-DG [15] (AAAI’24) - - - - - - - 38.3 - - - - - - - 38.0
DivAlign [8] (CVPR’24) - - - - - - - 37.2 - - - - - - - 42.5
UFR [20] (CVPR’24) 36.9 35.8 61.7 33.7 39.5 42.2 27.5 39.6 43.6 38.1 66.1 14.7 49.1 26.4 47.5 40.8

Diff. Detector (SD-1.5) 37.5 32.4 67.9 35.6 48.3 44.6 37.1 43.3 49.6 42.1 70.5 21.4 54.5 38.2 52.6 47.0
Diff. Detector (SD-2.1) 36.4 36.7 68.8 36.6 51.5 49.1 32.9 44.6 48.2 39.6 69.2 22.8 55.4 37.7 51.6 46.4

Diff. Guided (SD-1.5) 39.3 35.8 69.4 37.7 48.8 49.7 32.3 44.7+15.9 51.0 42.8 72.2 27.5 55.9 39.5 52.0 48.6+17.2

Diff. Guided (SD-2.1) 38.8 36.4 68.9 37.4 48.6 49.6 33.4 44.7+15.9 51.3 43.6 72.3 27.6 56.2 40.2 53.7 49.1+17.7

Night-Rainy Dusk-Rainy

IBN-Net [23] (CVPR’18) 24.6 10.0 28.4 0.9 8.3 9.8 18.1 14.3 37.0 14.8 50.3 11.4 17.3 13.3 38.4 26.1
SW [24] (ICCV’19) 22.3 7.8 27.6 0.2 10.3 10.0 17.7 13.7 35.2 16.7 50.1 10.4 20.1 13.0 38.8 26.3
IterNorm [12] (CVPR’19) 21.4 6.7 22.0 0.9 9.1 10.6 17.6 12.6 32.9 14.1 38.9 11.0 15.5 11.6 35.7 22.8
ISW [7] (CVPR’21) 22.5 11.4 26.9 0.4 9.9 9.8 17.5 14.1 34.7 16.0 50.0 11.1 17.8 12.6 38.8 25.9
CDSD [31] (CVPR’22) 24.4 11.6 29.5 0.4 10.5 11.4 19.2 15.3 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2
CLIPGap [29] (CVPR’23) 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3
SRCD [25] (TNNLS’24) 26.5 12.9 32.4 0.8 10.2 12.5 24.0 17.0 39.5 21.4 50.6 11.9 20.1 17.6 40.5 28.8
G-NAS [33] (AAAI’24) 28.6 9.8 38.4 0.1 13.8 9.8 21.4 17.4 44.6 22.3 66.4 14.7 32.1 19.6 45.8 35.1
OA-DG [15] (AAAI’24) - - - - - - - 16.8 - - - - - - - 33.9
DivAlign [8] (CVPR’24) - - - - - - - 24.1 - - - - - - - 38.1
UFR [20] (CVPR’24) 29.9 11.8 36.1 9.4 13.1 10.5 23.3 19.2 37.1 21.8 67.9 16.4 27.4 17.9 43.9 33.2

Diff. Detector (SD-1.5) 42.0 15.0 53.6 6.5 26.2 13.8 37.5 27.8 49.7 27.9 74.9 18.2 45.5 24.5 56.8 42.5
Diff. Detector (SD-2.1) 30.1 11.3 46.1 10.2 24.1 9.2 31.5 23.2 44.6 30.6 73.5 22.1 44.4 20.1 55.6 41.6

Diff. Guided (SD-1.5) 35.4 12.7 46.2 3.2 13.8 10.7 29.7 21.7+9.3 43.1 23.9 73.6 13.4 33.2 22.1 52.3 37.4+13.3

Diff. Guided (SD-2.1) 34.4 7.8 43.3 2.2 14.3 7.5 30.3 20.8+8.4 44.6 22.5 73.1 15.7 31.7 19.3 52.6 37.3+13.2

Table 4. Real to Artistic DG and DA Results (%) on Clipart (Classwise).

Methods aero. bike bird boat bottle bus car cat chair cow table dog horse bike psn. plant. sheep sofa train tv mAP

DG methods (without target data)

Div. [8] (CVPR’24) 29.3 50.9 23.4 35.3 45.3 49.8 33.4 10.6 43.3 22.3 31.6 4.5 32.9 51.9 40.2 51.1 18.2 29.6 42.3 28.5 33.7
DivAlign [8] (CVPR’24) 34.4 64.4 22.7 27.0 45.6 59.2 32.9 7.0 46.8 55.8 28.9 14.5 44.4 58.0 55.2 52.1 14.8 38.4 42.5 33.9 38.9

DA methods (with unlabeled target data)

AT [18] (CVPR’22) 33.8 60.9 38.6 49.4 52.4 53.9 56.7 7.5 52.8 63.5 34.0 25.0 62.2 72.1 77.2 57.7 27.2 52.0 55.7 54.1 49.3
D-ADAPT [13] (ICLR’22) 56.4 63.2 42.3 40.9 45.3 77.0 48.7 25.4 44.3 58.4 31.4 24.5 47.1 75.3 69.3 43.5 27.9 34.1 60.7 64.0 49.0
TIA [34] (CVPR’22) 42.2 66.0 36.9 37.3 43.7 71.8 49.7 18.2 44.9 58.9 18.2 29.1 40.7 87.8 67.4 49.7 27.4 27.8 57.1 50.6 46.3
CIGAR [19] (CVPR’23) 35.2 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 54.4 31.3 38.8 56.5 63.5 46.2
CMT [1] (CVPR’23) 39.8 56.3 38.7 39.7 60.0 35.0 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0

Ours (DG settings)
Diff. Detector (SD-1.5) 63.7 86.1 49.8 56.5 52.9 50.9 67.3 19.7 74.7 34.3 57.7 41.9 63.2 89.4 89.6 59.8 23.5 64.9 65.9 55.2 58.3
Diff. Detector (SD-2.1) 65.5 61.7 49.5 58.7 59.8 34.2 63.6 20.4 72.9 22.2 47.1 28.5 51.2 82.3 87.0 61.7 20.6 57.9 44.6 44.2 51.7
Diff. Guided (SD-1.5) 19.3 57.8 28.4 37.4 57.8 81.3 46.3 3.8 57.8 27.2 28.3 19.6 42.5 50.9 57.8 59.8 15.6 36.0 37.7 50.5 40.8+13.6

Diff. Guided (SD-2.1) 25.6 40.2 26.2 25.7 44.8 72.9 34.8 3.8 46.3 14.0 26.6 7.5 27.2 57.1 48.4 56.4 6.8 25.3 24.5 39.2 32.7+5.5



Table 5. Testing Results of Diffusion Detector with Different Stable Diffusion versions. SD-1.5: Stable Diffusion v1.5, SD-2.1: Stable
Diffusion v2.1, SD-3-M: Stable Diffusion v3 Medium. Foggy: FoggyCityscapes, Rainy: RainCityscapes. In Diverse Weather benchmark:
DF (Daytime-Foggy), DR (Dusk-Rainy), NR (Night-Rainy), NS (Night-Sunny).

Cross Camera Adverse Weather Synthetic to Real Real to Artistic Diverse Weather benchmark

Version BDD100K Foggy Rainy Cityscapes (car) BDD100K (car) Clipart Comic Watercolor DF DR NR NS

SD-1.5 46.6 50.1 58.2 62.8 64.4 58.3 51.9 68.4 43.3 42.5 27.8 47.0
SD-2.1 45.8 48.3 56.1 64.5 64.1 51.7 46.6 62.1 44.6 41.6 23.2 46.4

SD-3-M 40.4 46.1 59.1 59.7 54.2 28.7 24.1 45.0 36.0 30.5 15.9 32.8

D. Additional Results of Different Stable Dif-
fusion Versions

Performance Comparison of Different SD Versions: Ex-
perimental results in Tab. 5 demonstrate varying perfor-
mance among Stable Diffusion versions across different
scenarios. SD-1.5 consistently achieves superior perfor-
mance, particularly in adverse weather (50.1% for foggy,
58.2% for rainy) and artistic style transfer (58.3%, 51.9%,
68.4% for Clipart, Comic, Watercolor). While SD-2.1
maintains competitive performance and achieves 64.5% ac-
curacy in Cityscapes car detection, it shows performance
gaps of 6.6%, 5.3%, and 6.3% compared to SD-1.5 in artis-
tic style transfer. SD-3-M shows significantly lower perfor-
mance, with substantial degradation in artistic style trans-
fer (28.7%, 24.1%, 45.0%) and diverse weather conditions
(10.4% lower than SD-1.5).
Analysis of Architecture Differences: The inferior perfor-
mance of SD-3-M primarily stems from its architectural dif-
ferences. Unlike SD-1.5 and SD-2.1 with UNet [26] archi-
tecture that produces multi-scale hierarchical features, SD-
3-M with transformer-based structure [10] outputs fixed-
dimensional feature maps. This limitation affects its abil-
ity to capture fine-grained spatial information crucial for
object detection, particularly impacting performance across
diverse domains.
Ongoing Research: We are currently conducting extensive
experiments to improve the cross-domain detection perfor-
mance of SD-3-M. Our ongoing research focuses on devel-
oping effective methods to leverage the intermediate fea-
tures of SD-3-M, aiming to fully utilize its strong semantic
understanding capabilities while addressing the challenges
in dense prediction tasks. The experimental results and de-
tailed analysis will be reported in future work.

E. Additional Analysis for Results
E.1. Visualization of Domain Distribution Differ-

ences
Distribution Analysis: As visualized in Fig. 1, signifi-
cant distribution gaps exist between source and target do-
mains across different benchmarks. The diverse scenarios
including cross-camera, adverse weather, synthetic-to-real

transfer, artistic style transfer, and various weather condi-
tions all demonstrate distinct distribution separations be-
tween source and target domains. These distribution dis-
crepancies explain the challenges faced by conventional de-
tectors when deploying across domains, highlighting the ne-
cessity of robust domain-generalized detection approaches.

E.2. Confusion Matrix Error Analysis
Analysis of Confusion Matrices: As shown in Fig. 2 and 3,
the confusion matrices reveal that false negatives (missed
detections) are the primary factor affecting detection per-
formance in the baseline detector. Our proposed Diff. De-
tector significantly reduces the probability of missed detec-
tions, as evidenced by the stronger diagonal patterns in both
FoggyCityscapes and Clipart scenarios.

Through our designed feature and object alignment
mechanism, the Diff. Guided Detector successfully inherits
the robust detection capability from Diff. Detector, showing
similar improvements in reducing missed detections. The
enhanced diagonal patterns in confusion matrices validate
the effectiveness of our knowledge transfer framework in
improving cross-domain generalization performance.

F. Visualization of Detection Results
Visualization Results: As shown in Fig. 4, 5, 6, 7, 8, and 9,
our proposed methods demonstrate superior detection per-
formance across various challenging scenarios. Compared
to the baseline detector, both Diff. Detector and Diff.
Guided Detector achieve more comprehensive detection re-
sults, successfully identifying objects under different con-
ditions such as varying scales, weather conditions, light-
ing variations, and artistic styles. These qualitative re-
sults consistently validate the effectiveness of our proposed
diffusion-based framework in improving detection general-
ization across different domains.
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Figure 1. Image-level distribution visualization using UMAP [22] on six domain generalization benchmarks.

FR-R101 Baseline Diff. Detector Diff. Guided Detector 

Figure 2. Confusion matrix of Baseline (left), Diff. Detector (middle), and Diff. Guided Detector (right) on FoggyCityscapes.

FR-R101 Baseline Diff. Detector Diff. Guided Detector 

Figure 3. Confusion matrix of Baseline (left), Diff. Detector (middle), and Diff. Guided Detector (right) on Clipart.
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Figure 4. Qualitative prediction results on BDD100K.
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Figure 5. Qualitative prediction results on FoggyCityscapes.
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Figure 6. Qualitative prediction results on Cityscapes (Car).
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Figure 7. Qualitative prediction results on Clipart.
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Figure 8. Qualitative prediction results on Diverse Weather Benchmark.
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Figure 9. Qualitative prediction results on Corruption benchmark, showing detection results under 15 different corruption types (noise,
blur, weather, and digital) at maximum severity level.
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