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1. Additional Technical Details
1.1. Loss function
During training, We employ the Mean Square Error loss be-
tween the predicted velocity field {v̂t}Tt=1 and the ground
truth {vt}Tt=0 to optimize the model:

min
1

T

∫ T

t=1

||vt − v̂t||22 ≈ 1

T

T∑
t=1

||vt − v̂t||22 (1)

where we can only approximate the first integral as the sum-
mation over observed frames. But the nature of the approx-
imation does not dictate how the frames are distributed on
the timeline. They can be evenly or unevenly distributed.

1.2. Error Metrics
To evaluate our proposed model, we employ two metrics:
Errvel and Errflow. As presented in Sec. 4 of the main
paper, Errvel is used to assess the velocity field locally and
is calculated as:

Errvel =
1

T

T∑
t=1

||vt − v̂t||22 (2)

Differently, Errflow operates directly on the raw optical
flow data and is defined as:

Errflow =
1

T

T∑
t=1

||ot − ôt||22 (3)

Here, {ôt}Tt=1 and {ot}Tt=0 represent the predicted optical
flow and the ground truth respectively. Note that our model
predicts the velocity field instead of directly predicting opti-
cal flow. Therefore, the predicted velocity field is converted
into optical flow via G2P transfer, as detailed in sec.3.2 of
the main paper.
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Figure 1. Parameter estimation network. Operations annotated by
* are followed by a ReLU activation.

1.3. Neural Networks for Crowd Material

As illustrated in Sec 3.6 in the main paper, there are two
types of learnable parameters: Young’s modulus ϵ and
k. These parameters are estimated using neural networks,
specifically NNϵ for ϵ and NNk for k. Both networks share
the same architecture, as shown in Fig. 1. The design is
mainly to consider the motions of particles and its neighbor-
ing particles. Since we model a continumm where particles
can be anywhere and not necessarily evenly spaced, one of
the component in the network is the Continuous Convolu-
tion or CCov, inspired by the convolution layer designed
originally for a Lagrangian method [11]. The continuous
convolution captures the relative motions of the particles in
the neighborhood, which dictates the local deformation of
the field. In addition, we assume that the material param-
eter is different for every particle (pedestrian) in space and
time. Therefore, we also use a fully-connected component
(FC) to allow the individual particle motion to play a bigger
role compared with its neighbors whose motions are already
considered in the continuous convolution of the neighbor-
hood. After several repeated layers of CCov and FC com-
ponents, the network finally outputs the target parameter.

1.4. Conditional Variational Autoencoder for Ran-
dom Active Forces

As outlined in the main paper, active force learning is di-
vided into two parts. The first part, motion alignment (rep-
resented by αv), is learned through a straightforward 6-
layer convolutional neural network NNα , where the kernel
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Figure 2. Architecture of CVAE.

size, stride, and padding are set to 3, 1, and 1, respectively.
Each layer, except the final one, is followed by a Tanh acti-
vation function. The channel configuration for the layers is
32, 64, 128, 64, 32, and 1, respectively. The input of NNα

is the velocity field at the current step, and its output is the
corresponding α.

Secondly, to model the rest (expressed as −β|v|2v +
DL∇(∇ · v) +D1∇2v+D2(v · ∇)2v+ f̃ ), a conditional
variational autoencoder is utilized, as illustrated in Fig. 2.
The CVAE takes two inputs: x, representing the ground
truth of the remaining active forces, and y, serving as the
condition. The condition is composed of four terms |v|2v,
∇(∇ · v), ∇2v and (v · ∇)2v, and processed through an
embedding layer. Note that the decoder consists of multiple
components (D0, D1, D2, · · ·) which generate intermediate
outputs (x̂0, x̂1, x̂2, ···). These intermediate results are com-
bined using a weighted sum with weights (ω0, ω1, ω2, · · ·)
to produce the final output x̂. This architecture allows the
CVAE to effectively model the complex relationships be-
tween the input and the conditional data, making it suitable
for learning the intricate dynamics.

1.5. Optical flows to/from grid
Optical flows can be transferred to and from a grid repre-
sentation to for training, testing, analysis and comparison.
When transferring optical flow data to a grid, we make use
of the particle-to-grid operation in the MPM (P2G). Each
pixel in the optical flow field is treated as an individual par-
ticle, with its velocity mapped to the corresponding grid cell
using a B-spline function. Conversely, when transforming
the velocity field from a grid back to its corresponding opti-
cal flows, we use the grid-to-particle operation in the MPM
(G2P). G2P computes the velocity at grid nodes back to
each pixel, which is treated as the optical flow at that pixel.

This P2G then G2P mapping between optical flows
and the velocity field, aside from facilitate learning, has a
smoothening effect due to the B-spline based interpolation,
effectively removing random noises from the noisy optical
flows. In addition, this mapping also preserve the spatial
and temporal dynamics. This dual representation enables
the comparisons of the particle-level details and the grid-
level velocity.

1.6. Hyperparameters

In all datasets, the density is fixed at 1. This is because it is
not possible estimate each individual’s mass, and if it were,
there is no commonly agreed way of defining the density in
high-density crowds [6]. By defining the density to be 1,
the particle mass depends on the particle radius. The parti-
cle radii are set to 20 pixels on Drill1−3, 5 pixels on Hajj
and Hellfest, 10 pixels on Marathon. Note this setting
will not affect the learning of the dynamics as the dynamics
are learned mainly through the material parameters and the
active force.

For training, we employ Adam optimizer with an initial
learning rate of 1×10−4. To dynamically adjust the learning
rate during training, we apply a LambdaLR scheduler with
a decay function defined as lr = 1 × 10−4 × 0.9epoch/50,
epoch is the current iteration. The batch size is set to 4.

1.7. Adaptation of baseline methods

To demonstrate the superiority of out method, we adapt sev-
eral closest methods as baselines. BaselineI is a physics-
based method that models crowds using a weakly incom-
pressible fluid framework [7]. PredFlow [5] is a deep
learning method designed for predicting future scene pars-
ing and motion dynamics. Additionally, we include several
sequence prediction models, PredRNNv2 [12], SimVP [1],
and TAU [8], which are also pure deep learning approaches
and intended for video prediction tasks. PredFlow takes
four consecutive RGB frames as input and outputs the fu-
ture optical flows in an autoregressive fashion, BaselineI ,
however, simulates velocity fields but we need to exhaus-
tively tune the parameters. For the video prediction meth-
ods, we adapt them to take optical flow as input and fore-
cast future optical flow sequences. Specifically, during the
training, we take 1.2s optical flow as input and forecast the
next 1.2s optical flow. These baselines span a diverse range
of architectures, from physics-based models to cutting-edge
deep learning frameworks, ensuring comprehensive cover-
age across methodologies.

1.8. Simulation

Our simulation runs ∼ 40 FPS for 75 individuals. Like
any simulator, our method experiences a decrease in per-
formance when scaling to a large number of agents. Also,
albeit now shown in the paper, our method allows dynamic
adding or removing objects (dynamic or static), environ-
mental changes or events (e.g. explosion, evacuation). The
first two can be easily handled by boundary conditions,
while the latter can be realized by adding particle forces to
repel people from certain places, e.g. explosion, or attract
them, e.g. evacuation.



Percent Errvel Errflow
1.2s 2.4s 3.6s 4.8s 6.0s 7.2s 8.4s 1.2s 2.4s 3.6s 4.8s 6.0s 7.2s 8.4s

0% 1.1099 1.1748 1.1600 1.1332 1.1128 1.0954 1.0721 1.8016 1.8463 1.8072 1.7574 1.7185 1.6883 1.6558
50% 1.1078 1.1632 1.1419 1.1155 1.0966 1.0850 1.0640 1.7958 1.8303 1.7843 1.7349 1.6974 1.6729 1.6435
70% 1.1121 1.1637 1.1381 1.1069 1.0853 1.0705 1.0729 1.8086 1.8386 1.7891 1.7339 1.6942 1.6653 1.6378

Table 1. Evaluation on temporal discontinuities on Drill2.

2. Additional Experimental Results
2.1. Continuous-time Prediction
As aforementioned in the main paper, one distinctive feature
of our method is that it is a continuous-time model, which
does not require data to be observed on evenly discretized
timeline. This is because the core of our method is a PDE
which can be solved for any horizon in future. This feature
provides good flexibility in terms of data collection. For
CCTV camera videos, sometimes there can be objects e.g.
tree leaves flying across the view or certain sudden change
of the lighting condition. Under these conditions, the opti-
cal flows will be extremely unreliable. This requires certain
data pre-processing step, e.g. abandoning frames that are of
too low quality. However, in this situation, the other base-
line methods will not be able to be directly trained on the
pre-processed data, while our method can still be trained on
data unevenly distributed on the timeline. We refer to data
unevenly distributed in time as temporal discontinuities.

To verify the robustness of our model under temporal
discontinuities, we conduct three groups of experiments by
randomly masking 0%, 50% and 70% of the frames respec-
tively. Accordingly, we also can easily adapt our loss func-
tion to:

min
1

T

∫ T

t=1

||vt − v̂t||22 ≈ 1

T

∑
t∈Φ

||vt − v̂t||22 (4)

where Φ is the set of the observed frames and T = |Φ|.
The corresponding experimental results are presented in

Tab. 1. For both velocity prediction errors (Errvel) and
flow prediction errors (Errflow), the performance remains
stable across varying masking levels, with only minor vari-
ations observed. Notably, even under the 70% masking sce-
nario, the errors are comparable to those without masking.
These findings highlight the model’s capacity to maintain
accuracy and adaptability despite significant temporal dis-
continuities, making it well-suited for real-world applica-
tions where data observations are sparse or unevenly dis-
tributed in time.

2.2. Input requirements and parameter efficiency
Our approach demonstrates a significant advantage in both
input requirements and parameter efficiency. PredFlow
requires four consecutive RGB frames and has 42.534M

Std Errvel Errflow

0.1 1.0437 1.6281
1 1.0615 1.6438
10 1.0639 1.6484

Prob Errvel Errflow

0.1 1.0544 1.6380
0.7 1.0491 1.6347
1 1.0759 1.6526

G/U Errvel Errflow

0.3/0.7 1.0709 1.6476
0.5/0.5 1.0808 1.6523
0.7/0.3 1.0669 1.6451

Table 2. Evaluation with noises (1-3) on Drill2. 1: a zero-mean
Gaussian noise with a Std (standard deviation); 2: a 2D uniform
noise with Prob being the probability of values within [-0.7, 0.7] ×
[-0.8, 0.8]; 3: a mixture noise as the weighted sum of the Gaussian
(G) and the uniform (U) noise.

parameters, HINN requires two consecutive RGB frames
and has 8.374M parameters, while PredRNNv2, SimVP,
and TAU demand ten consecutive frames, with 24.216M,
18.604M, and 44.657M parameters, respectively. Although
BaselineI operates on a single optical flow frame, it needs
laborious hand-tuning. Our model achieves mostly the
best long-horizon prediction with only a single optical flow
frame as input, and merely 3.06M parameters. Vastly dif-
ferent from other models, our input contains little dynamics.
The substantial reduction in parameter count, coupled with
the minimal input requirements, highlights our model’s ef-
ficiency, especially when data and computational resources
are limited.

2.3. Robustness to Input Noise
CCTV camera data is by far the major data on high-density
crowd particularly because of the uninvasiveness of the data
collection process. However, these videos often suffer from
low quality because they are captured from distant cameras
and tend to be blurred, making optical flow estimation un-
reliable. Owning to the physics model in Crowd MPM, our
model incorporates a self-correction strategy (P2G opera-
tion) that effectively handles spatially noisy.

Since the noise in optical flows is unknown, we con-
ducted an experiment on Drill2 to show that our method
is robust to several noises with various shapes and mag-
nitudes, e.g. Gaussian, uniform, and their mixtures, in
Tab. 2. All results are similar, demonstrating the robust-
ness of our model. To understand this, when noisy data
are given, the P2G projects it onto the grid (i.e. equiva-
lent to one step smoothing) then the mass and momentum
are preserved the whole time, essentially filtering out high-
frequency noises. During training, even when the ground-
truth is noisy, Crowd MPM computes its closest physically
sensible prediction, by conserving the mass and momen-
tum. Admittedly, if the optical flow is completely obscure,



Figure 3. a–e Five simple motion vector fields corresponding to
c and d (where c and d denote the value of curl and divergence
respectively)[13].(a) no rotation or dispersal/gathering, (b) the ro-
tation is clockwise and there is no divergence, (c) the rotation is
counterclockwise without any dispersal/gathering, (d) the motion
is pure dispersal without any curl component, (e) the motion is
pure gathering without any curl component, (f) the motion is rel-
atively complex since it has rotation and convergence simultane-
ously.

e.g. a white noise, Crowd MPM would not learn the un-
derlying dynamics. In this case, Crowd MPM can still be
hand-tuned to visually mimic the data.

2.4. Visual Analysis Based on Learned Crowd Ma-
terials

In addition to prediction and simulation, our method is also
a good tool for visual analysis of high-density crowds, es-
pecially in terms of its global flows. Previously, operators
such as curl (vorticity) and divergence have been proposed
as a good visualization tool for analysis [13]. However,
[13] proposes to compute vorticity and divergence on op-
tical flows while our method compute them on the velocity
fields. Curl is defined as c =

∂vy

∂x − ∂vx

∂y , representing the
tendency of the flow to exhibit rotational motion or vorticity.
Divergence, on the other hand, is defined as d = ∂vx

∂x +
∂vy

∂y ,
representing the rate at which a quantity (such as mass or
velocity) expands or contracts at a point. Note that v is a
motion vector field, which can either be optical flow or ve-
locity field. Several examples of global flow patterns are
provided in Fig. 3, illustrating how these flows can be ana-
lyzed and interpreted using curl and divergence.

In our scenario, curl reflects steering behaviors, showing
how individuals adjust their movements, particularly at the
periphery or near obstacles or other peoople. Divergence in-
dicate areas where the crowd density is decreasing (positive
divergence) or increasing (negative divergence), such as the
region near an exit in Drill where people move towards. We
show a qualitative comparison on Drill in Fig. 4 at 3s, 9s
and 15s.

[13] is designed for crowd behavior classification, such
as lane formation, clockwise arch and so on, so it aims to
recognize motion patterns based on normalized velocities
(per pixel), shown in iii and iv in Fig. 4 (zoom in for a better
view). Therefore, the curl and divergence computed based
on normalized velocities can only indicate the general pat-
terns of motions, not the actual motions. Visually, the global
flow patterns are not obvious.

In contrast, our model can act as a more detailed ana-

lyzer based on the velocity and interpret how the behavior
evolves. For example, the areas pointed out by arrows in
Fig. 4a vi, Fig. 4b vi and Fig. 4c vi have relatively high pos-
itive divergence. Physically, this means there are masses
flowing out of these areas. In time, these areas move toward
the exit. This captures that the fact that people come into
the scene and walk towards the exit. After a short while,
there is no people entering the scene. Correspondingly, the
high divergence areas first appear near the top entrance then
gradually move towards the exit. The divergence in front
of the exit is always negative, i.e. masses flowing in, due to
that for this area the exit rate is lower than the entering rate
(i.e. people aggregating in front of the exit but not many can
get through), hence the blue regions.

In terms of the curl, it reflects the local rotations of
masses in a region. This is reflected by the red and blue
areas near the exit at t = 3s in Fig. 4a v. This is when the
first batch of people arrive at the exit. At this time, peo-
ple can still go through the exit relatively easily, especially
the people right in front of the exit walking relatively faster
than the people on both sides of the exit. This caused a
relative local rotation of the mass flow, i.e. masses in the
middle flowing out faster than the ones on both sides, and
masses on both sides getting into the middle flow. Both the
clockwise (red region) and counter-clockwise (blue region)
vorticity reflect this. This curl becomes less prominent at
t = 9s and t = 12, when many people are crowded in front
of the exit and start to block the way, so that the general
movements become slow.

Fig. 4 demonstrates the importance of being able to
extract and stably simulate the velocity fields for analy-
sis. Capturing the underlying velocity field provides clear
global flow trends, then direct analysis on the optical flows
which might be polluted by noises [13]. Our method pro-
vides a tool which not only extracts and simulates the veloc-
ity field, but also learns the dynamics from specific crowds.

2.5. Ablation Study
We analyze the impact of different components, by evalu-
ating four variants of our model, including different combi-
nations of learnable parameters:
• BaselineI , a weakly incompressible fluid model [7], with

a global, non-learnable parameter ϵ whose value is ob-
tained by a grid search.

• BaselineII is the same as BaselineI but with ϵ learnable
for each particle.

• BaselineIII has a new strain-stress tensor and new learn-
able parameter k, based on BaselineII .

• BaselineIV is BaselineIII with NNα (introduced in
Sec.3.4 in main paper).

• Ours is the full model.
Table 3 clearly shows a continuously improvement across
multiple metrics, when more components are added. It



(a)

(b)

(c)

Figure 4. Qualitative comparison on curl and divergence map. iii and iv are generated from [13], while v and vi are obtained by our method.
Zoom in for a better view.



Methods Drill1 Hajj
Errvel Errflow Errvel Errflow

BaselineI 0.60740 0.98405 1.45878 1.68066
BaselineII 0.60727 0.98396 1.45709 1.67930
BaselineIII 0.60483 0.98160 1.45679 1.67906
BaselineIV 0.48987 0.88263 0.76161 1.07112

Ours(mean) 0.48276 0.87165 0.69135 0.99511
Ours(best) 0.48161 0.87033 0.68281 0.98604

Table 3. Ablation study on Drill1 and Hajj. Results involving
active force are based on 10 trials. The training and testing dura-
tion are 60 frames on Drill1 and 30 frames on Hajj.

has been argued that high-density crowds behave like flu-
ids [10]. This is confirmed by the hand-tuned BaselineI ,
whose performance is reasonable. BaselineII shows the ne-
cessity of making the material learnable. With learnable ϵ,
the material becomes more heterogeneous and fits the data
better. Furthermore, an addition of a learnable compression
component (BaselineIII ) can capture the dynamics better.
We notice that the difference between BaselineI−III seems
small. After further investigation, this is likely to be caused
by two factors. First, BaselineI is a already good baseline
as argued by previous research. Hajj crowds form stable
flows circling around the center of the scene. Therefore,
it is possible to hand-tune BaselineI to mimic the general
dynamics, although this relies on heavy human labor. Sec-
ond, the metrics are based on the optical flow or the velocity
field estimated from optical flow, where the scale of values
is small.

The results are significantly after active forces are intro-
duced, even with only the motion alignment component in
BaselineIV with no stochasticity. This further proves such
crowds can be interpreted as active matters and learning
such active forces greatly enhance the model’s ability to
predict dynamics. Further adding the stochastic part again
significantly improves the results (Ours).

3. Crowd Material Point Method
There are two mainstream methods to solve PDEs. One is
the Lagrangian method which treats the material as a set
of particles and tracks them to determine their properties
such as mass, positions, and velocities. The other one is the
Eulerian method which discretizes the space into grids con-
taining nodes with various properties and employs the grids
to represent materials. Material Point Method (MPM) is a
hybrid Eulerian-Lagrangian method combining the advan-
tages of Eulerian and Lagrangian methods. As our model
involves Eulerian data and Lagrangian behaviors, we en-
hance the standard MPM to propose Crowd MPM to simu-
late extremely high-density crowds.

Our derivations are mainly following [4]. The main
changes are brought by our newly introduced learnable

stress and active forces. Similar to the standard MPM, our
Crowd MPM also incorporates both the Lagrangian view
and the Eulerian view. Under the Lagrangian view, we fo-
cus on the particle p with mass mp, position xp, and veloc-
ity vp. The motion of material is defined by a deformation
map Φ(·, t) : Ω0 → Ωt, where Ω0,Ωt ⊂ R2. Ωt denotes
the set of positions of particles at time t. As a result, Ω0

is the set of initial positions of particles. Particularly, we
use Xp and xp to denote the initial position and the current
position for any particle in the simulated material, respec-
tively. We can note that Xp = x0

p. The deformation map Φ
further enables us to determine the velocity (we ignore the
subscript p for notation simplicity in this section):

V(X, t) =
∂Φ

∂t
(X, t). (5)

The Jacobian of the deformation map Φ is significantly im-
portant and will be used often later:

F(X, t) =
∂Φ

∂X
(X, t). (6)

The most common way to employ F is to use its determi-
nant J . Finally, we give the governing equations based on
the conservation of mass and conservation of momentum:

R(X, t)J(X, t) = R(X, 0), (7)

R(X, 0)
∂V

∂t
= ∇X ·Pcm +R(X, 0)(Bbd +Bact), (8)

where R is the Lagrangian mass density, Pcm is the crowd
material stress under the Lagrangian view, and Bbd and
Bact denote the accelerations deriving from the body force
and the active force on X, respectively. To be more specific,
the Lagrangian mass density is defined via:

R(X, t) = ρ(Φ(X, t), t) = ρ(x, t), (9)

ρ(x, t) = lim
ϵ→+0

mass(Bt
ϵ)∫

Bt
ϵ
dx

, (10)

where Bt
ϵ ⊂ Ωt is a ball with radius ϵ and center x ∈ Ωt.

We note that the Lagrangian view builds governing equa-
tions on material space Ω0. We offer the proof for Eq. (7)
and Eq. (8) in Sec. 4.

Under the Eulerian view, we pay attention to the world
space Ωt. In addition, grids consisting of a series of nodes
with index i are built to estimate material motion. Each
note i has physics properties including mass mi, position
xi, and velocity vi, etc. We also give the governing equa-
tions based on the conservation of mass and conservation of
momentum:

D

Dt
ρ(x, t) + ρ(x, t)∇x · v(x, t) = 0 (11)



ρ(x, t)
Dv

Dt
= ∇x · σcm + ρ(x, t)(bbd + bact) (12)

where D
Dt is the material derivative [9], v(x, t) =

V(Φ−1(x, t), t), σcm is the crowd material stress under the
Eulerian view, and bbd and bact denote the accelerations
deriving from the body force and the active force on x, re-
spectively. We also leave the proof for Eq. (11) and Eq. (12)
in Sec. 4

Finally, we give the weak form, which is crucial for the
discretization, of the conservation of momentum in the Eu-
lerian view:∫

Ωt

qiρaidx =

∫
∂Ωt

qitids(x)−
∫
Ωt

qi,kσ
cm
ik dx

+

∫
Ωt

qiρb
bd
i dx+

∫
Ωt

qiρb
act
i dx. (13)

where qi is the ith component of an arbitrary function
q(·, t) : Ωt → Rd, qi,k = ∂qi

∂xk
, ai is the ith component of

a = Dv
Dt , and ti is the ith component of the boundary force

per unit reference area t(x, t). Similarly, σcm
ik , bbdi and bacti

are the components of σcm, bbd, and bact, respectively. ds
denotes a tiny area. For efficient expression, the summation
is implied on the repeated index. The proof of the weak
form can be found in Sec. 4.

Subsequently, we can clarify three steps in our Crowd
MPM individually: (1) Particle-to-grid transfer in Sec. 3.1
(2) Grid Operation in Sec. 3.2, and (3) Grid-to-particle
transfer in Sec. 3.3.

3.1. Particle-to-grid Transfer
This step aims to transfer particle mass and momentum to
the grid at each timestamp n. Each particle contributes to
the transfer process based on weights relying on particles
and grids. Specifically, the transfer process in defined by:

mn
i =

∫
x∈Ωn

Wn
i (x)ρ(x) dx, (14)

mn
i v

n
i =

∫
x∈Ωn

Wn′

i (x)ρ(x)v(x)dx, (15)

where Wn
i and Wn′

i are weight functions, Ωn is the set
of all particles at timestamp n, ρ denotes density.

We follow the Affine Particle-In-Cell (APIC) method [3]
to discretize Eq. (14) and Eq. (15) due to its excellent nu-
merical properties:

mn
i =

∑
p

wn
ipmp, (16)

mn
i v

n
i =

∑
p

wn
ip[mpv

n
p +mpC

n
p (xi − xn

p )], (17)

where wn
ip = ϕ(xi − xn

p ) (ϕ is a quadratic B-spline func-
tion [2]), Cn

p is the affine velocity gradient [3]. mp and xi
don’t have superscript n because mp doesn’t change with
time and the grids are rebuilt at each MPM iteration.

3.2. Grid Operation
We update velocities on the grid by:

vn+1
i = vn

i +∆t
fni
mi

, (18)

Then boundary conditions are employed to refine the up-
dated velocities:

vn+1
i = BC(vn+1

i ) = vn+1
i − γn

〈
n,vn+1

i
〉
. (19)

We explain how to obtain vn
i and mi in the last section.

Next, I will introduce how to estimate fni .
Like Sec. 3.1, we transfer forces on particles to the grid

at each timestamp n. We give the transfer process for each
component of forces. To avoid confusion, we use Greek
letters like α and β to denote the component index.

fniα =

∫
x∈Ωn

Wn
i (x)ρ(x, t)aα(x, t)dx (20)

where other components of fni has a similar transfer pro-
cess. According to the weak form of the conservation of
momentum in the Eulerian view Eq. (13), we have:

fiα =

∫
Ωt

Wiρaαdx =

∫
∂Ωt

Witαds(x)−
∫
Ωt

Wi,γσ
cm
αγ dx

+

∫
Ωt

Wiρb
bd
α dx+

∫
Ωt

Wiρb
act
α dx.

(21)

where the superscript is ignored for notation simplicity.
Here, we set qα = Wi and qγ = 0 because q is arbitrary.
Following previous work [4], we omit the

∫
∂Ωt Witαds(x)

in Eq. (21) for simplicity given its minor effect. Given our
estimation of σcm

p = σ(xp, t) at every Lagrangian particle
xp, we have:

fst
iα = −

∫
Ωt

Wi,γσ
cm
αγ dx ≈ −

∑
p

σcm
pαγwip,γVp

= −
∑
p

σcm
pα ∇wipVp, (22)

where σcm
pα is the αth row of σcm

p , Vp is the volume of Bt
∆x

at the Lagrangian particle xp. We follow [3] to estimate Vp.
Because we use the quadratic B-spline function to represent
wip, we can obtain its gradient by:

∇wip =
4

∆x2
wip(xi − xp) (23)

Combining Eq. (22) and Eq. (23) results in:

fst
iα ≈ −

∑
p

4

∆x2
wipσ

cm
pα (xi − xp)Vp (24)



By defining:

4

∆x2
σcm
pα (xi − xp)Vp =

Gp(xi − xp) +
∑

p′∈Np

(fpp′

r − fpp′

t ), (25)

we can get the Eq.11 in the main paper. For the body force,
we take the centripetal force as an example. Other body
forces such as the goal attraction force have a similar deriva-
tion. Therefore, bbd(x, t) = v(x,t)2

r , where r is the length
of the radius of the moving circle. Then, we have:

f bd
iα =

∫
Ωt

Wiρb
bd
α dx =

∫
Ωt

Wiρ
v2
α

r
dx

≈
∑
p

wipmp

v2
pα

r
. (26)

As for the active force, we have bact = av + c, where c is
the stochastic part of the active force, i.e. c = −b|v|2v +
DL∇(∇ · v) + D1∇2v + D2(v · ∇)2v + f̃ . a and c are
predicted by neural networks. Then, we have:

fact
iα =

∫
Ωt

Wiρb
act
α dx =

∫
Ωt

Wiρ(avα + cα)dx

=
∑
p

wipmp(avpα + cpα). (27)

Combining Eq. (24), Eq. (26) and Eq. (27), we have:

fiα = fst
iα + f bd

iα + fact
iα ≈

∑
p

− 4

∆x2
wipσ

cm
pα (xi − xp)Vp

+wipmp

v2
pα

r
+ wipmp(avpα + cpα)

(28)

3.3. Grid-to particle Transfer
Finally, we transfer the updated velocities vn+1

i back to par-
ticles and update positions of these particles:

vn+1
p =

∑
i

wn
ipv

n+1
i , xn+1

p = xn
p +∆tvn+1

p , (29)

We update the velocity gradient Cn+1
p for next step:

Cn+1
p =

4

∆x2

∑
i

wn
ipv

n+1
i (xi − xn

p )
T . (30)

Additionally, we also update the deformation gradient Fn+1
p

for estimating Vp:

Fn+1
p = (I+∆tCn+1

p )Fn
p . (31)

4. Proof Details
Push Forward and Pull Back. We introduce the push
forward and pull back operations based on the deforma-
tion map Φ for efficient formula derivation and understand-
ing. The deformation map Φ : Ω0 → Ωt typically is as-
sumed to be bijective, which means that any function de-
fined on one set like Ω0 can naturally be regarded as an-
other function defined on another set like Ωt by changing
variables. Push forward and pull back are two ways of
variable substitution here. To be formal, given the time
t and a function G(·, t) : Ω0 → R, we define the push
forward g(·, t) : Ωt → R as g(x, t) = G(Φ−1(x, t), t)
with x ∈ Ωt. Similarly, given the time t and a function
g(·, t) : Ωt → R, the pull back G(·, t) : Ω0 → R is de-
fined as G(X, t) = g(Φ(X, t), t) with X ∈ Ω0. Particu-
larly, the pull back of the pull forward of a function such as
G(·, t) is itself. We commonly think of a function of X/x
as Lagrangian/Eulerian. Therefore, the push forward (pull
back) of a function which is Lagrangian (Eulerian) is Eule-
rian (Lagrangian).

Conservation of Mass under the Lagrangian View.
For an arbitrary x ∈ Ωt, we consider the ball Bt

ϵ ⊂ Ωt

with radius ϵ and center x. The mass in Bt
ϵ shouldn’t vary

over time when ϵ is small enough. Therefore, we have
mass(Bt

ϵ) = mass(B0
ϵ ). According to the definition of

ρ, R, and J , we have:

mass(Bt
ϵ) =

∫
Bt

ϵ

ρ(x, t)dx =

∫
B0

ϵ

R(X, t)JdX, (32)

mass(B0
ϵ ) =

∫
B0

ϵ

R(X, 0)dX, (33)

for all Bt
ϵ ⊂ Ωt (t ≥ 0), where the second equality in

Eq. (32) is obtained by the formula of changing variables.
From Eq. (32) and Eq. (33), we can derive:∫

B0
ϵ

R(X, t)JdX =

∫
B0

ϵ

R(X, 0)dX. (34)

Given that Bt
ϵ is arbitrary, we can obtain:

R(X, t)J(X, t) = R(X, 0), (35)

for any X ∈ Ω0.
Conservation of Mass under the Eulerian View. We

start from Eq. (35), i.e. Eq. (7), to derive the conservation
of mass equation under the Eulerian view. First, we have:

∂

∂t
(R(X, t)J(X, t)) =

∂

∂t
R(X, 0) = 0, (36)

according to Eq. (35). Then, it is easy to get:

∂

∂t
(RJ) =

∂R

∂t
J +R

∂J

∂t
= 0, (37)



where we neglect (X, t) for notation simplicity. Then, we
use the result from [4]:

∂J

∂t
= J

∂v1
∂x1

+ J
∂v2
∂x2

, (38)

where x = (x1, x2) ∈ Ωt and v(x, t) = (v1, v2). Combin-
ing Eq. (37) and Eq. (38) results in:

∂R

∂t
J +RJ(

∂v1
∂x1

+
∂v2
∂x2

) = 0. (39)

We push forward on both sides of Eq. (39) to obtain:

D

Dt
ρ(x, t) + ρ(x, t)∇x · v(x, t) = 0. (40)

Conservation of Momentum under the Eulerian
View. Given an arbitrary Bt

ϵ ⊂ Ωt, the momentum change
on Bt

ϵ can be expressed as:

d

dt

∫
Bt

ϵ

ρ(x, t)v(x, t)dx =

∫
∂Bt

ϵ

σcmnds(x)+∫
Bt

ϵ

ρ(x, t)(bbd + bact)dx, (41)

where n(x) is the unit outward normal of ∂Bt
ϵ at x and ds

denotes a tiny area. We further have:

d

dt

∫
Bt

ϵ

ρ(x, t)v(x, t)dx =
d

dt

∫
B0

ϵ

R(X, t)V(X, t)JdX

=

∫
B0

ϵ

R(X, t)J(X, t)A(X, t)dX, (42)

where A(X, t) = ∂2Φ
∂t2 (X, t) = ∂V

∂t (X, t), the first equal-
ity comes from the formula of changing variables, and the
second equality obtained by swapping the order of the tak-
ing derivative symbol and the integral symbol. Combining
Eq. (41) and Eq. (42) results in:∫

B0
ϵ

R(X, t)J(X, t)A(X, t)dX =∫
∂Bt

ϵ

σcmnds(x) +

∫
Bt

ϵ

ρ(x, t)(bbd + bact)dx (43)

We push forward the left side of Eq. (43) to get:∫
B0

ϵ

R(X, t)J(X, t)A(X, t)dX =

∫
Bt

ϵ

ρ(x, t)a(x, t)dx,

(44)
where a(x, t) = A(Φ−1(x, t), t). Further, we also have
A(Φ−1(x, t), t) = Dv

Dt , which has proof in [4]. Then,

Eq. (43) becomes:∫
Bt

ϵ

ρ(x, t)a(x, t)dx =

∫
Bt

ϵ

ρ(x, t)
Dv

Dt
dx =∫

∂Bt
ϵ

σcmnds(x) +

∫
Bt

ϵ

ρ(x, t)(bbd + bact)dx =∫
Bt

ϵ

∇x · σcmdx+

∫
Bt

ϵ

ρ(x, t)(bbd + bact)dx (45)

Since Bt
ϵ is arbitrary, we have:

ρ(x, t)
Dv

Dt
= ∇x · σcm + ρ(x, t)(bbd + bact). (46)

Conservation of Momentum under the Lagrangian
View. We can also derive the conservation of momentum
under the Lagrangian view from Eq. (43). Instead of push-
ing forward, we pull back the right side of Eq. (43). The
pull back of the first integral on the right side of Eq. (43) is:∫

∂Bt
ϵ

σcm(x, t)nds(x) =∫
∂B0

ϵ

J(X, t)σcm(Φ(X, t), t)F−T (X, t)N(X)ds(X),

(47)

where N(X) is the unit outward normal of ∂B0
ϵ at X. We

introduce our the Crowd first Piola Kirchoff stress Pcm =
JσcmF−T and get:∫

∂Bt
ϵ

σcm(x, t)nds(x) =

∫
∂B0

ϵ

Pcm(X, t)Nds(X)

=

∫
B0

ϵ

∇x ·Pcm(X, t)dX. (48)

Subsequently, we pull back the second integral on the right
side of Eq. (43):∫

Bt
ϵ

ρ(x, t)(bbd + bact)dx =∫
B0

ϵ

R(X, t)J(X, t)(Bbd +Bact)dX =∫
B0

ϵ

R(X, 0)(Bbd +Bact)dX, (49)

where we use Eq. (35) to get the second equality. We note
that the left side of Eq. (43) can be written as using Eq. (35):∫

B0
ϵ

R(X, t)J(X, t)A(X, t)dX =∫
B0

ϵ

R(X, 0)A(X, t)dX =

∫
B0

ϵ

R(X, 0)
∂V

∂t
(X, t)dX.

(50)



Combining Eq. (43), Eq. (48), Eq. (49), and Eq. (50) results
in:∫

B0
ϵ

R(X, 0)
∂V

∂t
(X, t)dX =∫

B0
ϵ

∇x ·Pcm(X, t)dX+

∫
B0

ϵ

R(X, 0)(Bbd +Bact)dX.

(51)

Because B0
ϵ is arbitrary, we can derive:

R(X, 0)
∂V

∂t
= ∇X ·Pcm+R(X, 0)(Bbd+Bact). (52)

Weak Form of the Conservation of Momentum in
Both Views. The weak form of an equation means that we
can derive its weak form from the equation but can’t de-
rive the equation from its weak form. The weak forms of
the conservation of momentum in both views are extremely
important to derive our discretized Crowd MPM. We start
with the Lagrangian view. We ignore the body force and
the active force for simplicity:

R(X, 0)A(X, t) = ∇X ·Pcm. (53)

Then, we have:

R0Ai =
∑
j

∂P cm
ij

∂Xj
=

∑
j

P cm
ij,j , (54)

where R0 = R(X, 0), Ai is the ith component of A(X, t),
P cm
ij is the element at the ith row and jth column in Pcm.

For efficient expression, the summation is implied on the
repeated index. Therefore, we have:

R0Ai = P cm
ij,j . (55)

Then, we derive the weak form of Eq. (53) by computing the
dot product between an arbitrary function Q(·, t) : Ω0 →
Rd and two sides of Eq. (53), respectively, and integrate
over Ω0:∫

Ω0

Qi(X, t)R(X, 0)Ai(X, t)dX =∫
Ω0

Qi(X, t)P cm
ij,j(X, t)dX =∫

Ω0

((Qi(X, t)P cm
ij (X, t)),j −Qi,j(X, t)P cm

ij (X, t))dX =∫
∂Ω0

QiP
cm
ij Njds(X)−

∫
Ω0

Qi,jP
cm
ij dX. (56)

The P cm
ij Nj would be determined by a boundary condition.

Assuming that T(X, t) is the boundary force per unit refer-
ence area, we have Ti = P cm

ij Nj . As a result, we have that
for an arbitrary Q(·, t) : Ω0 → Rd:∫

Ω0

QiR0AidX =

∫
∂Ω0

QiTids(X)−
∫
Ω0

Qi,jP
cm
ij dX.

(57)

Considering the full Eq. (52), i.e. Eq. (8), we have the fi-
nal weak form of the conservation of momentum in the La-
grangian view:∫

Ω0

QiR0AidX =

∫
∂Ω0

QiTids(X)−
∫
Ω0

Qi,jP
cm
ij dX

+

∫
Ω0

QiR0B
bd
i dX+

∫
Ω0

QiR0B
act
i dX.

(58)

Then we push forward Eq. (58) to get the weak form of the
conservation of momentum in the Eulerian view. The push
forward of the left side of Eq. (58) is derived by introducing
q that is the push forward of Q:∫

Ω0

QiR0AidX =

∫
Ωt

qi(x, t)ρ(x, t)ai(x, t)dx. (59)

Similarly, let t be the push forward of T, we have:∫
∂Ω0

QiTids(X) =

∫
∂Ωt

qi(x, t)ti(x, t)ds(x). (60)

Before giving the push forward of the second integral on the
right side of Eq. (58), we analyze Qi,j :

Qi,j =
∂Qi

∂Xj
=

∂qi
∂xk

∂xk

∂Xj
= qi,kFkj , (61)

where the summation is implied on the repeated index k,
Fkj is the element in F defined by Eq. (6), and x = Φ(X, t).
Recall that Pcm = JσcmF−T , then we have σcm =
1
JP

cmFT . Therefore, we the relationship between σcm and
Pcm:

σcm
ik ==

1

J
P cm
ij Fkj . (62)

Combining Eq. (61) and Eq. (62) let us derive the push for-
ward of the second integral on the right side of Eq. (58):∫

Ω0

Qi,jP
cm
ij dX =

∫
Ωt

qi,k(x, t)σ
cm
ik (x, t)dx. (63)

As bbd and bact are the natural push forward of Bbd and
Bact, it is easy to derive the push forward of the remaining
integrals in Eq. (58):∫

Ω0

QiR0B
bd
i dX =

∫
Ωt

qi(x, t)ρ(x, t)b
bd
i (x, t)dx∫

Ω0

QiR0B
act
i dX =

∫
Ωt

qi(x, t)ρ(x, t)b
act
i (x, t)dx.

(64)

Combing Eq. (59), Eq. (60), Eq. (63), and Eq. (64) results
in the final weak form of the conservation of momentum in
the Eulerian view:∫

Ωt

qiρaidx =

∫
∂Ωt

qitids(x)−
∫
Ωt

qi,kσ
cm
ik dx

+

∫
Ωt

qiρb
bd
i dx+

∫
Ωt

qiρb
act
i dx. (65)
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