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Supplementary Material Overview

The supplementary material presents more comprehensive
analysis and results of our MobileMamba to facilitate the
comparison of subsequent methods:

e Sec. A.1 provides more detailed Fine-Grained design
analysis and experiments on ImageNet-1K [2] dataset.

* Sec. A.2 provides more detailed Kernel Size analysis and
experiments on ImageNet-1K [2] dataset.

* Sec. A.3 provides more detailed DropPath analysis and
experiments on ImageNet-1K [2] dataset.

¢ Sec. A.4 provides more detailed ERF Visualization anal-
ysis compared with different structure SOTA methods on
ImageNet-1K [2] dataset.

* Sec. A.5 provides more detailed Pre-trained Models with
Different Resolutions for Downstream Tasks analysis and
experiments on MS-COCO 2017 [10] and ADE20K [16]
dataset.

* Sec. B.1 provides more detailed object detection results
using different frameworks on MS-COCO 2017 [10]
dataset.

* Sec. B.2 provides more detailed semantic segmentation
results using Mask R-CNN [3] for multiple magnitudes
of MobileMamba on ADE20K [16] dataset.

* The Codes folder in the supplementary materials contains
all the training and testing code for the models, as well as
the log files for each model.

A. More Ablation and Explanatory Analysis

A.1. Fine-Grained design analysis

We conducted experiments to analyze the impact of global
and local channel ratios in Tab. A1, dimensions in Tab. A2,
and depth in Tab. A3. For the global and local channel
ratios, we observed the importance of global channels for
model performance, despite a slight decrease in throughput.
In higher stages, due to the increased number of channels,
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some redundancy may exist. To reduce computational load,
we directly map 10% of the channels in the last two stages.

Regarding dimensionality, we controlled variables by
maintaining similar FLOPs and throughput while adjusting
the global and local ratios to accommodate different dimen-
sional changes. Altering the dimensions in stage 1 signif-
icantly affects FLOPs and throughput, whereas changes in
stage 3 primarily impact the number of model parameters.
To maximize dimensions in each stage while maintaining
low FLOPs and high throughput, we selected {192, 384,
448} as the dimensions for each stage.

For model depth, we found that increasing depth signifi-
cantly reduces throughput. Therefore, we increased depth
while maintaining similar throughput, but the effect was
limited due to lower FLOPs under the same conditions. In
extreme cases, where each stage has only one layer and
FLOPs are balanced with other models, throughput is sig-
nificantly higher, but performance is poor. After trade-offs,
we chose a depth of {1, 2, 2}.

Table Al. Ablations on Global £ and Local p Ratios.
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Table A2. Ablations on Dimensions C'.
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Table A3. Ablations on Depth D.
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A.2. Effect of kernel sizes

We experimented with the impact of different convolution
kernel sizes across stages, as shown in Tab. A4. Using the
same kernel size across different stages yields similar re-
sults. However, reducing the kernel size as the feature map
scale decreases with increasing stages improves model per-
formance.

Table A4. Ablations on Kernel Size

Size FLOPs(M) Params(M) Throughput Top-1
{7.7.7} 152 653 10937 71.7
{5,5.3} 15.0 652 11142 77.8
{5,3.3} 15.0 652 11130 71.6
{7,5,3} 15.0 652 11000 78.0

A.3. Effect of DropPath

For the MobileMamba-T2, T4, and S6 models, we did
not use DropPath due to their shallow depth. In the Bl
model, we applied DropPath, with specific results shown in
Tab. A5. A DropPath value of 0.03 achieved the best perfor-
mance, increasing Top-1 accuracy by 0.2 compared to not
using DropPath. Further increasing the DropPath value did
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Figure A1l. Visualization of the ERF of different model methods.

not lead to additional performance improvements.

Table AS. Ablations on Drop-path rate.

Drop-path Rate Top-1
.0 79.7

0.03 79.9

0.05 79.8

0.07 79.8

0.1 79.8

A.4. Visualization of the ERF of different model
methods

In Fig. Al, we compare the ERF visualization results of
CNN-based MobileNet [5, 7, 12], Transformer-based Effi-
cientViT [11], hybrid-structured EMO [14], and our Mo-
bileMamba at different stages. The input resolution is fixed
at 224x224. Both our method and EfficientViT [11] em-
ploy a three-stage approach, while MobileNet [5, 7, 12] and
EMO [14] follow the traditional four-stage approach. Our
MobileMamba method exhibits a larger and more intense
EREF at each stage compared to the other SoTAs.

A.S5. Analysis of Pre-trained Models with Different
Resolutions for Downstream Tasks

The specific experimental results for downstream tasks
are shown in Tab. A6,A7,A8. We investigate the impact



of pre-trained model weights with different input resolu-
tions on downstream tasks. We use two pre-trained model
weights, MobileMamba-B1 and MobileMamba-B4. The
only difference between them is the resolution used dur-
ing pre-training on ImageNet-1K [2]: MobileMamba-B1
is pre-trained at a resolution of 256, while MobileMamba-
B4 is pre-trained at a resolution of 512. All other
model parameters are identical. For the object detection
task in downstream tasks, MobileMamba-B1 outperforms
MobileMamba-B4 on all metrics in SSDLite [6], Reti-
naNet [9], and Mask RCNN [3]. Conversely, for the se-
mantic segmentation task, MobileMamba-B4 outperforms
MobileMamba-B1 on all metrics in DeepLabv3 [1], Se-
mantic FPN [8], and PSPNet [15]. This may be be-
cause object detection tasks require stronger semantic fea-
ture information, while semantic segmentation tasks de-
mand higher segmentation accuracy. MobileMamba-B4,
pre-trained at a high resolution of 512, extracts features
with higher segmentation accuracy but slightly weaker se-
mantic information. In contrast, MobileMamba-B1, pre-
trained at a lower resolution of 256, extracts features with
stronger semantic information but lower accuracy. There-
fore, we use MobileMamba-B1 pre-trained weights as the
backbone for object detection tasks to enhance semantic in-
formation extraction. For semantic segmentation tasks, we
use MobileMamba-B4 pre-trained weights as the backbone
to improve segmentation accuracy.

Table A6. Detailed object detection performance using SS-
DLite [4] and RetinaNet [9] of our MobileMamba on MS-COCO
2017 [10] dataset. {: 512 x 512 resolution.

Backbone #Params | FLOPs | mAP mAPY, mAPl; mAPS mAPY, mAP!
MobileMamba-B1 18.0 1.7G 240 395 24.0 3.1 234 46.9
MobileMamba-B4 18.0 1.7G 239 395 242 29 235 47.1

SSDLite
(4]

MobileMamba-B1{ 18.0 44G 295 477 30.4 8.9 350 470

MobileMamba-B4t 18.0 44G  29.1 471 30.0 8.7 343 46.7
Z5 MobileMamba-B1 27.1 151G 396 59.8 42.4 215 43.1 539
s =
8=
£

MobileMamba-B4 27.1 151G 395 599 42.1 21.5 429 54.6

B. Detailed Downstream Results

B.1. Detailed Object Detection Results

Tab. A6 shows more detailed object detection results us-
ing SSDLite [4] and RetinaNet [9] of our MobileMamba on
MS-COCO 2017 [10] dataset, while Tab. A7 provide de-
tailed object detection results using Mask R-CNN [3].

Table A7. Detailed object detection performance using Mask
RCNN [3] of our MobileMamba on MS-COCO 2017 [10] dataset.

mAP mAPS) mAPY mAPS mAPY, mAP!

Backbone #Params | FLOPs |
mAP mAPY; mAPJ; mAPS mAPj; mAP
406 618 43.8 224 435 559
MobileMamba-B1 38.0 178G
374 589 399 17.1 399 56.4
40.1 618 43.0 22.0 429 56.1
MobileMamba-B4 ~ 38.0 178G

Table A8. Detailed semantic segmentation performance using
DeepLabv3 [1], Semantic FPN [8], and PSPNet [15] to adequately
evaluate our MobileMamba on ADE20K [16] dataset.

Backbone #Params | FLOPs| mloU aAcc mAcc
o
é _ MobileMamba-B1 23.0 4.7G 367 760 46.8
2=
3
A MobileMamba-B4 23.0 4.7G 36.6 763 47.1
MobileMamba-B1 19.8 5.6G 40.7 794 51.8
£=
[
MobileMamba-B4 19.8 5.6G 425 799 537
% . MobileMamba-B1 20.5 4.5G 365 762 46.7
EZ
%]
A
MobileMamba-B4 20.5 4.5G 369 762 479

B.2. Detailed Semantic Segmentation Results

Tab. A8 shows more detailed semantic segmentation results
using DeepLabv3 [1], Semantic FPN [8], SegFormer [13],
and PSPNet [15] of our MobileMamba on ADE20K [16]
dataset.
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