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Supplementary Material Overview
The supplementary material presents more comprehensive
analysis and results of our MobileMamba to facilitate the
comparison of subsequent methods:
• Sec. A.1 provides more detailed Fine-Grained design

analysis and experiments on ImageNet-1K [2] dataset.
• Sec. A.2 provides more detailed Kernel Size analysis and

experiments on ImageNet-1K [2] dataset.
• Sec. A.3 provides more detailed DropPath analysis and

experiments on ImageNet-1K [2] dataset.
• Sec. A.4 provides more detailed ERF Visualization anal-

ysis compared with different structure SoTA methods on
ImageNet-1K [2] dataset.

• Sec. A.5 provides more detailed Pre-trained Models with
Different Resolutions for Downstream Tasks analysis and
experiments on MS-COCO 2017 [10] and ADE20K [16]
dataset.

• Sec. B.1 provides more detailed object detection results
using different frameworks on MS-COCO 2017 [10]
dataset.

• Sec. B.2 provides more detailed semantic segmentation
results using Mask R-CNN [3] for multiple magnitudes
of MobileMamba on ADE20K [16] dataset.

• The Codes folder in the supplementary materials contains
all the training and testing code for the models, as well as
the log files for each model.

A. More Ablation and Explanatory Analysis
A.1. Fine-Grained design analysis
We conducted experiments to analyze the impact of global
and local channel ratios in Tab. A1, dimensions in Tab. A2,
and depth in Tab. A3. For the global and local channel
ratios, we observed the importance of global channels for
model performance, despite a slight decrease in throughput.
In higher stages, due to the increased number of channels,

*Equal contributions.
†Corresponding author.

some redundancy may exist. To reduce computational load,
we directly map 10% of the channels in the last two stages.

Regarding dimensionality, we controlled variables by
maintaining similar FLOPs and throughput while adjusting
the global and local ratios to accommodate different dimen-
sional changes. Altering the dimensions in stage 1 signif-
icantly affects FLOPs and throughput, whereas changes in
stage 3 primarily impact the number of model parameters.
To maximize dimensions in each stage while maintaining
low FLOPs and high throughput, we selected {192, 384,
448} as the dimensions for each stage.

For model depth, we found that increasing depth signifi-
cantly reduces throughput. Therefore, we increased depth
while maintaining similar throughput, but the effect was
limited due to lower FLOPs under the same conditions. In
extreme cases, where each stage has only one layer and
FLOPs are balanced with other models, throughput is sig-
nificantly higher, but performance is poor. After trade-offs,
we chose a depth of {1, 2, 2}.

Table A1. Ablations on Global ξ and Local µ Ratios.

{C1, C2, C3}
{D1, D2, D3}

{ξ1, ξ2, ξ3}
{µ1, µ2, µ3}

FLOPs
(M)

Params
(M) Throughput Top-1

{192, 384, 448}
{1, 2, 2}

{0.6, 0.6, 0.6}
{0.4, 0.3, 0.3} 620 14.6 11353 77.5

{192, 384, 448}
{1, 2, 2}

{0.7, 0.6, 0.5}
{0.2, 0.2, 0.3} 619 14.3 11815 77.7

{192, 384, 448}
{1, 2, 2}

{0.8, 0.6, 0.6}
{0.2, 0.3, 0.3} 637 14.7 11222 77.7

{192, 384, 448}
{1, 2, 2}

{0.8, 0.7, 0.6}
{0.2, 0.3, 0.4} 652 15.0 10949 77.8

{192, 384, 448}
{1, 2, 2}

{0.8, 0.8, 0.8}
{0.2, 0.1, 0.1} 675 16.0 10560 78.0

{192, 384, 448}
{1, 2, 2}

{0.0, 0.7, 0.8}
{1.0, 0.2, 0.1} 618 14.8 12735 77.2

{192, 384, 448}
{1, 2, 2}

{0.6, 0.7, 0.8}
{0.4, 0.2, 0.1} 646 15.6 11546 77.8

{192, 384, 448}
{1,2,2}

{0.8, 0.7, 0.6}
{0.2, 0.2, 0.3} 652 15.0 11000 78.0
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Table A2. Ablations on Dimensions C.

{C1, C2, C3}
{D1, D2, D3}

{ξ1, ξ2, ξ3}
{µ1, µ2, µ3}

FLOPs
(M)

Params
(M) Throughput Top-1

{192, 320, 368}
{1, 3, 4}

{0., 0.75, 0.75}
{0.9, 0.15, 0.15} 632 15.9 10811 77.7

{172, 320, 368}
{1, 3, 4}

{0.65, 0.65, 0.65}
{0.25, 0.25, 0.25} 581 15.1 10809 77.6

{180, 336, 368}
{1, 3, 4}

{0.5, 0.5, 0.5}
{0.4, 0.4, 0.4} 595 14.8 10916 77.6

{192, 336, 368}
{1, 3, 4}

{0.4, 0.4, 0.4}
{0.5, 0.5, 0.5} 599 14.2 11373 77.5

{208, 400, 464}
{1, 2, 2}

{0.6, 0.5, 0.4}
{0.3, 0.4, 0.5} 678 15.2 11120 77.8

{224, 336, 400}
{1,2,2}

{0.8,0.7,0.6}
{0.2,0.2,0.3} 659 12.6 11337 77.4

{208, 384, 416}
{1,2,2}

{0.8,0.7,0.6}
{0.2,0.2,0.3} 681 14.5 10956 78.1

{176, 384, 480}
{1,2,2}

{0.8,0.7,0.6}
{0.2,0.2,0.3} 622 15.7 11599 77.8

{192, 384, 448}
{1,2,2}

{0.8,0.7,0.6}
{0.2,0.2,0.3} 652 15.0 11000 78.0

Table A3. Ablations on Depth D.

{C1, C2, C3}
{D1, D2, D3}

{ξ1, ξ2, ξ3}
{µ1, µ2, µ3}

FLOPs
(M)

Params
(M) Throughput Top-1

{160, 304, 448}
{2, 3, 3}

{0.15, 0.55, 0.55}
{0.35, 0.35, 0.35} 560 14.8 11236 77.6

{128, 256, 384}
{3, 4, 5}

{0.15, 0.55, 0.55}
{0.35, 0.35, 0.35} 510 15.0 11155 77.1

{192, 384, 448}
{1,2,2}

{0.8,0.7,0.6}
{0.2,0.2,0.3} 652 15.0 11006 78.0

{208, 416, 624}
{1, 1, 1}

{0.8, 0.7, 0.6}
{0.2, 0.2, 0.3} 648 15.3 12397 77.4

{192, 384, 576}
{1, 2, 1}

{0.8, 0.7, 0.6}
{0.2, 0.2, 0.3} 651 15.1 11000 77.8

A.2. Effect of kernel sizes
We experimented with the impact of different convolution
kernel sizes across stages, as shown in Tab. A4. Using the
same kernel size across different stages yields similar re-
sults. However, reducing the kernel size as the feature map
scale decreases with increasing stages improves model per-
formance.

Table A4. Ablations on Kernel Size

Size FLOPs(M) Params(M) Throughput Top-1
{7,7,7} 15.2 653 10937 77.7
{5,5,3} 15.0 652 11142 77.8
{5,3,3} 15.0 652 11130 77.6
{7,5,3} 15.0 652 11000 78.0

A.3. Effect of DropPath
For the MobileMamba-T2, T4, and S6 models, we did
not use DropPath due to their shallow depth. In the B1
model, we applied DropPath, with specific results shown in
Tab. A5. A DropPath value of 0.03 achieved the best perfor-
mance, increasing Top-1 accuracy by 0.2 compared to not
using DropPath. Further increasing the DropPath value did

Figure A1. Visualization of the ERF of different model methods.

not lead to additional performance improvements.

Table A5. Ablations on Drop-path rate.

Drop-path Rate Top-1
0.0 79.7
0.03 79.9
0.05 79.8
0.07 79.8
0.1 79.8

A.4. Visualization of the ERF of different model
methods

In Fig. A1, we compare the ERF visualization results of
CNN-based MobileNet [5, 7, 12], Transformer-based Effi-
cientViT [11], hybrid-structured EMO [14], and our Mo-
bileMamba at different stages. The input resolution is fixed
at 224x224. Both our method and EfficientViT [11] em-
ploy a three-stage approach, while MobileNet [5, 7, 12] and
EMO [14] follow the traditional four-stage approach. Our
MobileMamba method exhibits a larger and more intense
ERF at each stage compared to the other SoTAs.

A.5. Analysis of Pre-trained Models with Different
Resolutions for Downstream Tasks

The specific experimental results for downstream tasks
are shown in Tab. A6,A7,A8. We investigate the impact



of pre-trained model weights with different input resolu-
tions on downstream tasks. We use two pre-trained model
weights, MobileMamba-B1 and MobileMamba-B4. The
only difference between them is the resolution used dur-
ing pre-training on ImageNet-1K [2]: MobileMamba-B1
is pre-trained at a resolution of 256, while MobileMamba-
B4 is pre-trained at a resolution of 512. All other
model parameters are identical. For the object detection
task in downstream tasks, MobileMamba-B1 outperforms
MobileMamba-B4 on all metrics in SSDLite [6], Reti-
naNet [9], and Mask RCNN [3]. Conversely, for the se-
mantic segmentation task, MobileMamba-B4 outperforms
MobileMamba-B1 on all metrics in DeepLabv3 [1], Se-
mantic FPN [8], and PSPNet [15]. This may be be-
cause object detection tasks require stronger semantic fea-
ture information, while semantic segmentation tasks de-
mand higher segmentation accuracy. MobileMamba-B4,
pre-trained at a high resolution of 512, extracts features
with higher segmentation accuracy but slightly weaker se-
mantic information. In contrast, MobileMamba-B1, pre-
trained at a lower resolution of 256, extracts features with
stronger semantic information but lower accuracy. There-
fore, we use MobileMamba-B1 pre-trained weights as the
backbone for object detection tasks to enhance semantic in-
formation extraction. For semantic segmentation tasks, we
use MobileMamba-B4 pre-trained weights as the backbone
to improve segmentation accuracy.

Table A6. Detailed object detection performance using SS-
DLite [4] and RetinaNet [9] of our MobileMamba on MS-COCO
2017 [10] dataset. †: 512 × 512 resolution.

Backbone #Params ↓ FLOPs ↓ mAP mAP b
50 mAP b

75 mAP b
S mAP b

M mAP b
L

SS
D

L
ite

[4
]

MobileMamba-B1 18.0 1.7G 24.0 39.5 24.0 3.1 23.4 46.9

MobileMamba-B4 18.0 1.7G 23.9 39.5 24.2 2.9 23.5 47.1

MobileMamba-B1† 18.0 4.4G 29.5 47.7 30.4 8.9 35.0 47.0

MobileMamba-B4† 18.0 4.4G 29.1 47.1 30.0 8.7 34.3 46.7

R
et

in
aN

et
[9

] MobileMamba-B1 27.1 151G 39.6 59.8 42.4 21.5 43.1 53.9

MobileMamba-B4 27.1 151G 39.5 59.9 42.1 21.5 42.9 54.6

B. Detailed Downstream Results

B.1. Detailed Object Detection Results

Tab. A6 shows more detailed object detection results us-
ing SSDLite [4] and RetinaNet [9] of our MobileMamba on
MS-COCO 2017 [10] dataset, while Tab. A7 provide de-
tailed object detection results using Mask R-CNN [3].

Table A7. Detailed object detection performance using Mask
RCNN [3] of our MobileMamba on MS-COCO 2017 [10] dataset.

Backbone #Params ↓ FLOPs ↓
mAP mAP b

50 mAP b
75 mAP b

S mAP b
M mAP b

L

mAP mAPm
50 mAPm

75 mAPm
S mAPm

M mAPm
L

MobileMamba-B1 38.0 178G
40.6 61.8 43.8 22.4 43.5 55.9

37.4 58.9 39.9 17.1 39.9 56.4

MobileMamba-B4 38.0 178G
40.1 61.8 43.0 22.0 42.9 56.1

36.9 58.6 39.2 16.4 39.0 56.8

Table A8. Detailed semantic segmentation performance using
DeepLabv3 [1], Semantic FPN [8], and PSPNet [15] to adequately
evaluate our MobileMamba on ADE20K [16] dataset.

Backbone #Params ↓ FLOPs ↓ mIoU aAcc mAcc

D
ee

pL
ab

v3
[1

] MobileMamba-B1 23.0 4.7G 36.7 76.0 46.8

MobileMamba-B4 23.0 4.7G 36.6 76.3 47.1

FP
N

[8
] MobileMamba-B1 19.8 5.6G 40.7 79.4 51.8

MobileMamba-B4 19.8 5.6G 42.5 79.9 53.7

PS
PN

et
[1

5]

MobileMamba-B1 20.5 4.5G 36.5 76.2 46.7

MobileMamba-B4 20.5 4.5G 36.9 76.2 47.9

B.2. Detailed Semantic Segmentation Results
Tab. A8 shows more detailed semantic segmentation results
using DeepLabv3 [1], Semantic FPN [8], SegFormer [13],
and PSPNet [15] of our MobileMamba on ADE20K [16]
dataset.
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