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Table 1. Details about three versions of backbone.

Backbone
The Number of VSS Blocks

Embedded Dimension
Stage 1 Stage 2 Stage 3 Stage 4

VMamba-T 2 2 9 2 96
VMamba-S 2 2 27 2 96
VMamba-B 2 2 27 2 128

Abstract

This document provides supplementary materials for the Sub-
mission. Sec. 1 elaborates on additional implementation
details, including encoder configuration, tri-modal convertor,
VSS decoder layers, loss function and experimental details.
In Sec. 2, we present two specific explanations of SNS for a
better understanding. Further ablation studies on different
encoder configuration are given in Sec. 3. More comparison
results are reported in Sec .4, incorporating more methods
and an additional evaluation metric. Lastly, visual compari-
son with SOTA methods are drawn in Sec. 5.

1. Additional Implementation Details
1.1. Encoder Configuration
Vmamba [30] provides three backbone versions pretrained
on ImageNet [45], namely VMamba-T, VMamba-S, and
VMamba-B. The detailed configurations of these backbones
are presented in Table 1. For both efficiency and accu-
racy considerations, we adopt VMamba-S as the encoder
of Samba. Additionally, ablation studies comparing different
encoder configurations are provided in Table 2.

1.2. Tri-modal Convertor
Within the tri-modal convertor, input features, i.e., fr

4 ∈
RH4×W4×C4 , fd

4 ∈ RH4×W4×C4 and ff
4 ∈ RH4×W4×C4 ,

are processed by a Linear and a DWConv, respectively. Then

*Corresponding author: Keren Fu (fkrsuper@scu.edu.cn).
*The reference link of the PyTorch-based toolbox for evaluating all tasks

is https://github.com/zzhanghub/eval-co-sod, and the link of MATLAB-
based toolbox is https://github.com/DengPingFan/DAVSOD.
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Figure 1. Diagram of a visual state space (VSS) decoder layer.

they are flattened to RL×C4 , where L = H4 × W4, and
then concatenated on the L dimension. Next, we utilize a S6
block to process the concatenated sequence to conduct the in-
teraction of multi-modal information. Finally, the sequence
is split to recover three outputs and summed up, followed by
a Linear projection. This process can be formulated as:

f̄r
4 = DWConv (Linear (fr

4 )) ,

f̄d
4 = DWConv

(
Linear

(
fd
4

))
,

f̄f
4 = DWConv

(
Linear

(
ff
4

))
,

f̃r
4 , f̃

d
4 , f̃

f
4 = Split

(
S6

(
Cat

(
f̄r
4 , f̄

d
4 , f̄

f
4

)))
,

f4 = Linear
(
f̃r
4 + f̃d

4 + f̃f
4

)
.

(1)

1.3. VSS Decoder Layers
As we mention in the Submission, we implement VSS de-
coder layers based on VSS blocks [30]. Fig. 1 illustrates the
diagram of a VSS decoder layer. Specifically, we modify
the VSS block by removing the SiLU activation functions
[4], and integrate a channel attention mechanisms (CAM)
[12] between the SS2D module and LN layer to explore
inter-channel dependencies, resulting in the proposed VSS
decoder block. Note that each VSS decoder layer is com-
posed of four VSS decoder blocks.

1.4. Loss Function
We adopt a combination of widely used binary cross en-
tropy (BCE) loss and intersection-over-union (IoU) loss for

https://github.com/zzhanghub/eval-co-sod
https://github.com/DengPingFan/DAVSOD


Table 2. Ablation studies of different encoder configurations on five RGB benchmark datasets. “↑” denotes that the larger value is better, and
“↓” denotes that the smaller value is better. M represents mean absolute error (MAE) [1, 40]. The best results are stressed in bold.

Variant Configuration
ParamsMACs DUTS[56] DUT-O[63] HKU-IS[22] PASCAL-S[25] ECSSD[61]

(M) (G) Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓
D1 Samba(VMamba-T) 33.48 34.03 .925 .921 .958 .023 .881 .847 .914 .041 .939 .952 .971 .021 .883 .885 .921 .052 .949 .961 .972 .022
D2 Samba(VMamba-S) 49.59 46.68 .932 .930 .966 .020 .889 .859 .922 .037 .945 .956 .978 .018 .892 .896 .931 .047 .953 .965 .978 .019
D3 Samba(VMamba-B) 87.91 82.42 .934 .933 .967 .020 .890 .857 .926 .037 .947 .956 .979 .018 .896 .899 .935 .048 .956 .967 .979 .018

Table 3. Quantitative comparison of our Samba against other SOTA RGB SOD methods on five benchmark datasets. “-” indicates the result
is not available. “↑” denotes that the larger value is better. The best three results are stressed in red, blue and green.

Method
Params MACs DUTS[56] DUT-O[63] HKU-IS[22] PASCAL-S[25] ECSSD[61]

(M) (G) Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓
CNN-based

ITSD-R[71] 26.47 15.96 .885 .867 .929 .041 .840 .792 .880 .061 .917 .926 .960 .031 .861 .839 .889 .071 .925 .939 .959 .035
MINet-R[38] 162.38 87.11 .884 .864 .926 .037 .833 .769 .869 .056 .919 .926 .960 .029 .856 .831 .883 .071 .925 .938 .957 .034
LDF-R[58] 25.15 15.51 .892 .877 .930 .034 .839 .782 .870 .052 .920 .929 .958 .028 .861 .839 .888 .067 .925 .938 .954 .034
GateNet-R[70] 128.63 162.22 .891 .874 .932 .038 .840 .782 .878 .055 .921 .926 .959 .031 .863 .836 .886 .071 .924 .935 .955 .038
EDN[59] 42.85 20.41 .892 .893 .933 .035 .849 .821 .884 .049 .924 .940 .963 .027 .864 .879 .907 .062 .927 .950 .957 .032
CSF-R2[9] 36.53 18.96 .890 .869 .929 .037 .838 .775 .869 .055 - - - - .863 .839 .885 .073 .931 .942 .960 .033
ICON-R[74] 33.09 20.91 .890 .876 .931 .037 .845 .799 .884 .057 .920 .931 .960 .029 .862 .844 .888 .064 .928 .943 .960 .032
MENet[57] 27.83 94.62 .905 .895 .943 .028 .850 .792 .879 .045 .927 .939 .965 .023 .871 .848 .892 .062 .927 .938 .956 .031

Transformer-based
VST[28] 44.48 41.36 .896 .877 .939 .037 .850 .800 .888 .058 .928 .937 .968 .030 .873 .850 .900 .067 .932 .944 .964 .034
EBM[65] 118.96 53.38 .909 .900 .949 .029 .858 .817 .900 .051 .930 .943 .971 .023 .877 .856 .899 .061 .941 .954 .972 .024
ICON-S[74] 94.30 52.59 .917 .911 .960 .025 .869 .830 .906 .043 .936 .947 .974 .022 .885 .860 .903 .048 .941 .954 .971 .023
BBRF[33] 74.40 46.00 .908 .905 .951 .025 .855 .820 .898 .044 .935 .946 .936 .020 .871 .884 .925 .049 .939 .957 .972 .021
EVP[29] - - .917 .910 .956 .027 .864 .822 .902 .047 .935 .945 .971 .024 .880 .859 .902 .061 .936 .949 .965 .029
VST-S++ [26] 74.90 32.73 .909 .897 .947 .029 .859 .813 .890 .050 .932 .941 .969 .025 .880 .859 .901 .062 .939 .951 .969 .027
VSCode-T[32] 54.09 72.77 .917 .910 .954 .027 .869 .830 .910 .045 .935 .946 .970 .024 .878 .852 .900 .062 .945 .957 .971 .024
VSCode-S[32] 74.72 93.76 .926 .922 .960 .024 .877 .840 .912 .043 .940 .951 .974 .021 .887 .864 .904 .058 .949 .959 .974 .022
Samba 49.59 46.68 .932 .930 .966 .020 .889 .859 .922 .037 .945 .956 .978 .018 .892 .896 .931 .047 .953 .965 .978 .019

training our Samba, which is formulated as:

L = Lbce + Liou. (2)

Our total loss is defined as:

Ltotal = L (Sc, GT ) + L (Sf , GT ) , (3)

where GT represents ground truth, Sc represents the coarse
saliency map predicted by fr

4 and Sf represents the final
saliency map output by our Samba.

1.5. Experimental Details
For VSOD and RGB-D VSOD tasks, we employ RAFT [50]
as the optical flow extractor, given its consistently strong
performance. Notably, our results for the VSOD task may
differ from those reported in previous studies. This discrep-
ancy is due to our adoption of a PyTorch-based toolbox for
evaluating all tasks, whereas previous VSOD methods utilize
a MATLAB-based toolbox which has different implementa-
tion details*.

2. Deeper Discussions of SNS
To better understand the SNS algorithm, we present two
specific explanations as follows:

Explanation 1. From the perspective of Dijkstra’s al-
gorithm, SNS can be regarded as a constrained version of
Dijkstra’s algorithm. The constraint is that all salient patches
must be traversed by the algorithm. Thus, the core idea of
the SNS algorithm is to identify a path that not only visits
all salient patches but also closely approximates the shortest
possible route. This distinguishes SNS from the traditional
Dijkstra’s algorithm.

Explanation 2. From another perspective, SNS can be
seen as an improved version of the “S” pattern algorithm
[62], which we term the “S+” algorithm. The primary im-
provement lies in the cross-row scanning: instead of rigidly
following the conventional “S” shape, the “S+” algorithm
calculates the distance between the last salient patch of the
current row and the leftmost and rightmost salient patches of
the next row, and then select the salient patch with smaller
distance as the next scanning patch, thereby maintaining
greater spatial continuity of salient patches.

3. Further Ablation Studies

3.1. Different Encoder Configuration

To verify the effectiveness of our selected encoder configura-
tion (VMamba-S), we utilize VMamba-T and Vmamba-B to



Table 4. Quantitative comparison of our Samba against other SOTA RGB-D SOD methods on five benchmark datasets.

Method
Params MACs NJUD[18] NLPR[39] SIP[5] STERE[35] DUTLF-D[42]

(M) (G) Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓Sm ↑Fm ↑Em ↑M ↓
CNN-based

HDFNet[37] 44.15 91.77 .908 .911 .944 .039 .923 .917 .963 .023 .886 .894 .930 .048 .900 .900 .943 .042 .908 .915 .945 .041
CoNet[17] 43.66 20.89 .896 .893 .937 .046 .912 .893 .948 .027 .860 .873 .917 .058 .905 .901 .947 .037 .923 .932 .959 .029
BBSNet[7] 49.77 31.20 .921 .919 .949 .035 .931 .918 .961 .023 .879 .884 .922 .055 .908 .903 .942 .041 .882 .870 .912 .058
JL-DCF[8] 143.52 211.06 .877 .892 .941 .066 .931 .918 .965 .022 .885 .894 .931 .049 .900 .895 .942 .044 .894 .891 .927 .048
SPNet[72] 67.88 175.29 .925 .928 .957 .029 .927 .919 .962 .021 .894 .904 .933 .043 .907 .906 .949 .037 .895 .899 .933 .045
CMINet[64] 188.12 213.00 .929 .934 .957 .029 .932 .922 .963 .021 .899 .910 .939 .040 .918 .916 .951 .032 .912 .913 .938 .038
DCF[16] 53.92 108.60 .904 .905 .943 .039 .922 .910 .957 .024 .874 .886 .922 .052 .906 .904 .948 .037 .925 .930 .956 .030
SPSN[19] - - .918 .921 .952 .032 .923 .912 .960 .023 .892 .900 .936 .043 .907 .902 .945 .035 - - - -

Transformer-based
VST[28] 53.83 51.33 .922 .920 .951 .035 .932 .920 .962 .024 .904 .915 .944 .040 .913 .907 .951 .038 .943 .948 .969 .024
SwinNet-B[31] 199.18 122.20 .920 .924 .956 .034 .941 .936 .974 .018 .911 .927 .950 .035 .919 .918 .956 .033 .918 .920 .949 .035
HRTransNet[49] 68.89 18.80 .908 .911 .945 .037 .926 .916 .964 .021 .859 .866 .909 .059 .917 .915 .955 .031 .925 .930 .958 .028
CATNet[48] 262.73 172.06 .932 .937 .960 .025 .938 .934 .971 .017 .910 .928 .951 .034 .920 .922 .958 .030 .952 .958 .975 .018
VST-S++ [26] 143.15 45.41 .928 .928 .957 .031 .935 .925 .964 .021 .904 .918 .946 .038 .921 .916 .954 .034 .945 .950 .969 .024
CPNet[13] 216.50 129.34 .935 .941 .963 .024 .940 .936 .971 .016 .907 .927 .946 .035 .920 .922 .960 .029 .951 .959 .974 .018
VSCode-T[32] 54.09 72.77 .941 .945 .967 .025 .938 .930 .966 .020 .917 .936 .955 .032 .928 .926 .957 .030 .952 .959 .974 .019
VSCode-S[32] 74.72 93.76 .944 .949 .970 .022 .941 .932 .968 .018 .924 .942 .958 .029 .931 .928 .958 .028 .960 .967 .980 .015
Samba 54.94 71.64 .949 .956 .975 .018 .947 .941 .976 .014 .931 .949 .966 .025 .935 .933 .963 .026 .956 .964 .976 .017

replace the encoder of our Samba respectively, and evaluate
them on five RGB benchmark datasets. As shown in Table 2,
the results reveal that:

(1) Compared to “D1”, “D2” shows only a modest in-
crease in Params (16.11M) and MACs (12.65G). However, it
demonstrates significant performance improvements across
various datasets, particularly on the PASCAL-S [25] dataset,
with Sm increasing by 0.009, Fm increasing by 0.011, Em

increasing by 0.010, and M decreasing by 0.005.
(2) Compared to “D2”, “D3” exhibits a considerable in-

crease in Params (38.32M) and MACs (35.74G), yet its per-
formance improvements across various datasets are marginal.
The most notable gains are observed on the PASCAL-S [25]
dataset, with Sm increasing by 0.004, Fm by 0.003, Em by
0.004, and M decreasing by only 0.001.

These experimental results demonstrate that selecting
VMamba-S as the encoder of Samba achieves an optimal
balance between efficiency and accuracy.

4. More Comparison Results
To conserve the space, we only present only 10 state-of-the-
art (SOTA) methods for each of RGB SOD, RGB-D SOD,
RGB-T SOD and VSOD tasks in the Submission. For more
comprehensive comparison, we include six additional meth-
ods for each of the four tasks, and introduce an additional
evaluation metric, the mean absolute error (M ) [1, 40], to
assess the model performance, as shown in Table 3, 4, 6,
5. The experimental results consistently demonstrate that
Samba outperforms existing SOTA CNN- and transformer-
based SOD models, with a comparable number of Params
and relatively low MACs. Notably, we also present the re-
sults from another version of VSCode [32], i.e., VSCode-T.

Compared to VSCode-T on RGB benchmark datasets, our
Samba exhibits lower Params and MACs, with MACs re-
duced by a notable 26.09G. Furthermore, Samba achieves
significantly better performance across five datasets, par-
ticularly on the DUT-O [63] dataset, with Sm increasing
by 0.02, Fm increasing by 0.029, and Em decreasing by
0.008. Compared to VSCode-T on RGB-D, RGB-T and
VSOD benchmark datasets, our Samba achieves comparable
Params and MACs while delivering superior performance
across all datasets. It is worth noting that RGB-D VSOD re-
search remains in its early stage, with no additional methods
available for comparison.

5. Visual Comparison with SOTA Methods
In this section, we provide extensive visual comparison re-
sults with SOTA methods across RGB SOD (Fig. 2), RGB-D
SOD (Fig. 3), VSOD (Fig. 5), RGB-T SOD (Fig. 4) and
RGB-D VSOD (Fig .6) tasks. These results demonstrate the
superior performance and robustness of our Samba when
tackling a variety of challenging scenarios, including ex-
tremely large or small salient objects, object occlusions,
multiple objects, and complex backgrounds.
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